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A B S T R A C T

Venous valve tissues, though used in vein reconstruction surgeries and bioprosthetic valves with moderate
success, have not been extensively studied with respect to their structure. Their inherent anisotropic, non-linear
behavior combined with severe diseases which affect veins, such as chronic venous insufficiency, warrant un-
derstanding the structure and material behavior of these tissues. Hence, before any bioprosthetic grafts may be
used in place of tissues, it is of the utmost importance to understand the mechanical and structural properties of
these tissues as this may lead to higher success rates for valve replacement surgeries. The longevity of the
bioprosthetics may also increase if the manufactured grafts behave the same as native valves. Building on the
scant information about the uniaxial and biaxial mechanical properties of jugular venous valves and wall tissues
from previous studies, the current focus of our investigation lies in understanding the material behavior by
establishing a phenomenological strain energy-based constitutive relation for the tissues. We used bovine veins
to study the behavior of valve leaflet tissue and adjoining wall tissue (from the proximal and distal ends of the
veins) under different biaxial testing protocols. We looked at the behavior of numerical partial derivatives of the
strain energy to select a suitable functional form for the strain energy for wall and valve tissues. Using this strain
energy descriptor, we determined the Cauchy stress and compared it with experimental results under additional
sets of displacement-controlled biaxial testing protocols to find material specific model parameters by the
Powell's method algorithm. Results show that whereas wall tissue strain energy can be explained using a
polynomial non-linear function, the valve tissue, due to higher non-linearities, requires an exponential function.
This study may provide useful information for the primary stages of bioprosthetic designs and replacement
surgeries and may support future studies investigating structural models. It may also support the study of
valvular diseases by providing a way to understand material properties and behavior and to form a continuum
model when required for numerical analyses and computational simulations.

1. Introduction

The venous valves regulate retrograde blood flow, among other
important functions (Gottlob and May, 1986). Parietal valves, also
called pocket valves, are the most common venous valves and are found
attached to the walls of the veins in a bicuspid, or occasionally tri-
cuspid, manner. In this way, the valves function in a similar fashion to
aortic or mitral valves. Aortic valves and venous valves contain similar
extracellular matrix (i.e., constituents and microstructure) but exhibit
different mechanical and biochemical properties (Ackroyd et al., 1985;
Humphrey, 2002; Huang and Lu, 2017). The structure, orientation,
density, and diameters of collagen fibers in the tissue are largely re-
sponsible for determining tissue anisotropy. One visible difference be-
tween the two is the thickness of venous valves, which is much less than
that of heart valves (e.g., 50 µm for bovine venous valve vs. 1500 µm
for bovine heart valve (Masoumi et al., 2013)).

When dealing with the mechanics of soft tissues, their complex
mechanical properties require more descriptive constitutive laws than
simple metals and rubber (Treloar, 1943a, 1943b, 1946). Many pre-
vious studies have provided descriptors for different soft animal tissues
(Nolan et al., 2014) like aortic valves (May-Newman et al., 2009), ar-
terial walls (Holzapfel et al., 2004; Humphrey, 1999), myocardium
(Humphrey et al., 1990a, 1990b), the cornea (Nguyen et al., 2008), etc.
Because aortic valves and wall tissue are responsible for a number of
heart diseases and deaths annually, this is an important topic to study in
the field of bioprosthetics. However, its venous counterpart, the venous
valves, which are commonly used as replacement grafts and are also
involved in diseases such as vein thrombosis (Eberhardt and Raffetto,
2005; Gottlob and May, 1986; Vogel et al., 2012), varicose veins
(Edwards and Edwards, 1940; Gottlob and May, 1986), and chronic
venous insufficiency (Bergan, 2008; Bernardini et al., 2010; Gottlob and
May, 1986), does not garner as much attention. With the scant
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information available on the mechanical behavior of venous valves, it is
difficult to decide analytically if any other man-made material or an-
imal tissue will be a good fit as a graft.

A variety of pathological processes affect the proper functioning of
venous valves, such as coagulation of blood in the sinus and over-
dilation (Buescher et al., 2005) of the vein due to higher hydrostatic
pressure (Bergan, 2008; Eberhardt and Raffetto, 2005; George, 2012).
Also, venous wall weakness has been attributed to hereditary reasons
(Gottlob and May, 1986). To understand how wall tissue, along with
the valve tissue, is responsible for valve incompetency, we need to have
a full understanding of the mechanics of healthy wall tissue which
warrants testing the avalvular wall region in addition to healthy venous
valves.

Soft tissues, due to their inherent properties, are modeled as hy-
perelastic materials, which reduces to providing a strain energy ex-
pression for material characterization. These material specific laws are
either data driven or are constrained by microstructural level interac-
tions in the material. The first kind of models are called phenomen-
ological models. The material is subjected to various types of loading
scenarios to investigate its behavior experimentally. The aim then lies
in trying to describe all observed behavior using a single model. The
structural models, however, are motivated by the microstructure of the
material. They seek to explain the material behavior by taking into
account the interactions at the structural level. They are not simply data
driven, but have established a concrete foundation in the form of dif-
ferential equations and probability functions which explain the struc-
ture. Structural models are difficult to implement in a finite element
analysis environment due to their complex nature, while phenomen-
ological models have a certain number of parameters which are simple
to implement.

There are quite a few studies in the field which present several
models following different approaches. Most phenomenological models
such as those employed by Mooney-Rivlin (Mooney, 1940; Rivlin,
1948a, 1948b; Rivlin and Saunders, 1951), Ogden (1972), Shariff
(2000), and Gent (Gent, 1996; Gent and Thomas, 1958) tend to focus on
isotropic materials, whereas structural models like that used by Arruda
(Arruda and Boyce, 1993) or Holzapfel (Holzapfel et al., 2000, 2004)
are quite difficult to implement and require a detailed structural survey
of the specimen with probability distributions explaining the orienta-
tions of fibers. There are currently no studies on constitutive models
describing venous valvular tissue remodeling and thus no means of
predicting the structural basis for potential tissue failure. Therefore, for
a pilot study, it is important to characterize the tissue behavior on a
phenomenological basis.

Currently, only a single study by Ackroyd et al. (1985) has reported
mechanical properties of venous valve leaflet tissue, and that only dealt
with uniaxial tensile strength and failure strain. In an effort to refine
tissue-level principles of venous valve function and valve replacement,
Huang and Lu began characterizing the biaxial non-linear mechanical
behavior of venous valve leaflet tissue (Huang and Lu, 2017). This
study laid the foundation and was critical to understanding valve
opening and closing mechanisms in healthy and diseased veins, while
also providing guidance in designing not only native-like venous valve
replacements, but venous-derived bioprosthetic heart valves as well.
Based on the study by Huang and Lu (2017), as is typical for many soft
collagenous tissues, three distinct stress-strain response regions were
evident for the venous valves: a relatively linear, low tangent modulus
toe region between 0% and 25% strain, an exponential transition region
between 25% and 45% strain, and a higher tangent modulus, relatively
linear region between 45% and 60% strain. It was also observed that
beyond the peak applied strain, tissue starts to tear. Because soft tissues
behave differently under various external conditions, the stress-strain
curves reported from any study are generally limited by the testing
range. Therefore, it is important to formulate a unique constitutive
equation to completely describe the mechanical behavior of venous
valve tissues.

To that end, the objective of our current study lies in understanding
the material behavior by selecting a phenomenological strain energy-
based constitutive relation which can closely predict the mechanical
behavior of the tissues. A comparative study between the behavior of
valve leaflet tissue and adjoining wall tissue was conducted to study the
degree of anisotropy in both (if any). The selection of the strain energy
descriptor in the study is guided purely by experimental data from a
variety of biaxial experiments over a wide range of deformations. After
selecting the model descriptor, we estimated the material parameters
for the experiments which are required to implement the model in the
finite element analysis environment for simulations. This study can
provide useful information by offering a deeper insight into the me-
chanical behavior of soft tissues and in primary stages of bioprosthetic
designs, replacement surgeries, and for studying valvular damages due
to diseases.

2. Materials and methods

2.1. Preliminaries and modeling

Structural exploration studies on jugular venous tissues have shown
that this tissue has an incompressible homogeneous structure as valve
tissues are found to have bundles of aligned collagen fibers (Gottlob and
May, 1986; Huang and Lu, 2017) throughout the tissue embedded in
extra cellular matrix. However, the belly region of the valve has con-
sistently more homogeneous structure compared to the commissures or
attachment area. A few studies which investigated the mechanical be-
havior of jugular venous tissue indicate non-linear and anisotropic be-
havior in the valve and wall tissue, the valve having more non-linear-
ities. The study by Huang and Lu (Huang and Lu, 2017; Lu, 2016)
concluded by identifying the high non-linearity and anisotropic nature
of jugular vein valves based on equibiaxial testing, by providing three
different, relatively linear, tangent modulus regimes over the strain
range of 0–60% followed by sample tearing at strains ranging from 65%
to 80% resulting from sample to sample variability. Moreover, the
histological study for the valves presented in the study also indicated
the local transversely isotropic nature of the venous valves in the test
region (Huang and Lu, 2017). This information enables us to plausibly
assume that the tissue under study, valve and wall alike, are pseudoe-
lastic, incompressible, homogeneous, and locally transversely isotropic
with respect to fiber axis.

Soft tissues that behave in this manner are categorized as hyper-
elastic and a strain energy expression is adequate to constitutively de-
scribe the behavior of these tissues. As suggested by Humphrey et al.
(1990a, 1990b), for modeling a hyperelastic soft tissue with this type of
behavior and preserving the simplicity of the experimental testing in-
volved, it is plausible to assume a strain energy expression which is a
function of only two invariants of the deformation, i.e. I1 and α.

=W W I α( , ),1

where I1 is the first invariant of the right Cauchy-Green deformation
tensor C and =α I2

4, which is the fourth invariant of the right Cauchy-
Green deformation tensor C.

= CI trace ( )1

and

= = ∙ ∙N C Nα I ,2
4

and N is the unit vector in the direction of the fiber axis.
Using these assumptions, the general constitutive statement for

Cauchy stress for the material becomes:

= − + + ∙ ⊗ ∙t I F N N Fp W B W
α

2 ( ) ,α T
1 (1)

where t is Cauchy stress, B is the left Cauchy-Green deformation tensor,
F is the deformation gradient, I is the identity tensor, p is the Lagrange
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multiplier to enforce incompressibility, and W1 and Wα are the partial
derivatives of the strain energy expression with respect to the two co-
ordinate invariants: =

∂

∂
W W

I1 1
and =

∂

∂
Wα

W
α . A strain energy descriptor

characteristic to the tissue under study, along with the general con-
stitutive statement, completes the hyperelastic model. The strain energy
descriptor is decided on the basis of experimentation which involves
biaxial testing where each invariant is alternatively held at a constant
value, called “constant invariant testing.” The plots of W1 and Wα with
respect to the invariants, termed “response curves,” provide an em-
pirical basis to decide a suitable function for the strain energy de-
scriptor.

2.2. Tissue procurement and preparation

Due to issues associated with procuring and testing human tissues,
and the fact that bovine tissues are used on a large scale as a suitable
substitute from a medical point of view in bioprosthetic grafts, we used
tissue samples from a number of mature bovines of Holstein breed, 10+
years old with an approximate weight of 1250 lbs. to incorporate and
examine any biological variability which may arise. A total of 24 bovine
veins in a bag of ice-cold Hank's balanced salt solution (HBSS; Lonza,
Walkersville, MD) with Gibco® Antibiotic-Antimycotic (Thermo-Fisher
Scientific, Waltham, MA) were shipped overnight on ice, ~24 h post-
slaughter. Wall tissues were dissected from proximal and distal end of 8
veins, and 32 valvular tissues are dissected from 16 veins. Test speci-
mens are cut from the belly region of the valve and avalvular region of
the wall in square sections of 7–10 mm per side and stored in HBSS. It is
important to note that wall tissue test specimens are not taken from the
sinus region of the valve owing to any fatigue they might have under-
gone during their life.

2.3. Testing methods and protocols

A detailed description of the biaxial testing device has been pre-
viously presented (Huang et al., 2012; Huang and Huang, 2015). As
discussed in Huang and Lu (Huang et al., 2012; Huang and Lu, 2017),
the tissue test specimens were mounted on the biaxial testing (CellScale
Biomaterials Testing, Waterloo, ON, Canada) using rakes in a bath of
HBSS pre-heated to 37 °C to imitate physiological conditions. For the
current study, the effective central region subject to stretching is
4.5 mm × 4.5 mm. The test rig has two load cells (10 N±0.02 N)
mounted perpendicular to each other and two actuators opposite to the
load cells to simulate loading or stretching. The displacement of the
actuators is recorded along with the load cell readings. Using sutures
and hooks for stretching the soft tissue can lead to inaccurate data due
to sagging of the thread. However, using rakes eliminates this issue
(Eilaghi et al., 2009, 2010; Nolan and McGarry, 2016).

The mounting of the specimen is set up in such a way that the fiber
axis for the tissue samples (the direction along which most fibers are
oriented: axial for wall tissue and circumferential for the valve tissue
(Gottlob and May, 1986)) coincides with one of the loading axes (x-axis

in the protocol). Specimen mounting and the fiber alignment with the
loading axes of the biaxial testing could refer to Huang et al. (2012).
Fiber angle – the angle between the loading axis and the high fiber
alignment axis – is crucial for determining the mechanical behavior of
the tissue. Mounting the tissue as defined above reduces the fiber angle
to zero, which in the absence of shear simplifies the calculations of I4
and in turn α. Great care is taken to ensure that the arms of one rake are
aligned with those mounted opposite to it to avoid any shear stress
which might be generated during the planar testing due to misalign-
ment of the rakes. The test specimen is preconditioned with a preload of
10 mN for eight loading-unloading cycles up to 30% strain at a strain
rate of 1% per second followed by a rest period of 300 s.

Thickness of each tissue sample is recorded four to five times before
testing by using a dial gauge (± 0.0001 in., The L.S. Starrett Co., Athol,
MA) and then an average value is used for stress calculations. Length
along each side is taken from the effective area between the rakes. The
stretch is calculated from the displacement data and the first Piola-
Kirchhoff stress (i.e., recorded force at any instance/original loading
area) is calculated from the force data (Nolan and McGarry, 2016)
which is converted into Cauchy stress (recorded force at any instance/
loading area at any instance) using deformation gradients (Fung, 1965;
Slaughter, 2001). The underlying kinematic assumptions for this are
that of homogeneous planar biaxial testing and can be found in the
study by Humphrey et al. (1990a).

In order to select a suitable strain energy descriptor expression, we
needed some experimental basis for the selection in terms of response
curves generated from constant invariant testing. The testing procedure
incorporates one invariant constant during the deformation and ob-
serving how W1 and Wα behave with the other changing invariant.
Based on the approximate mechanical breaking strength of the valve
tissue at about 60% (Huang and Lu, 2017), we selected the testing
range of I1 and α. Positing an approximate 60% true strain breaking
strength, we tested the samples for 3.2< I1<4.4 and 1.1< α<1.7.
The complete testing protocol including preconditioning of the sample
is shown in Fig. 1.

Constant α tests involve keeping the fiber direction stretch at a
constant value and stretching and un-stretching the orthogonal axis in a
triangular fashion, whereas constant I1 inherently requires one stretch
to increase and the other to decrease at the same time in order to keep I1
at a constant value. The protocol shown in Fig. 1 was subdivided into
two groups to prevent accumulation of damage at higher strains af-
fecting the following low strains and for cleaner presentation of data: a
“lower strain set” with maximum stretch<1.5 and a “higher strain set”
with maximum stretch>1.5. A total of 16 wall samples – eight from
the distal end of the vein and eight from the proximal end of the vein –
along with eight samples of valve tissue were tested under this protocol.
The force-displacement data as measured by the test equipment are
then converted intoW1,Wα, I1 and α to obtain the response curves using
formulae presented by Humphrey et al. (1990a, 1990b). The main
purpose of the response curves was to discern the behavior of the strain
energy function to guide the selection of an empirical strain energy

Fig. 1. Profile of stretch vs time in orthogonal di-
rections for constant invariant testing.
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relation. However, the model parameters were calibrated using sepa-
rate set of equibiaxial and off-axis tests.

2.4. Model parameters

One of the main principles of pseudoelasticity is that the tissues may
have different properties during the loading and unloading cycle (Fung,
1993). We observed qualitatively that the sample behaved similarly
during loading and unloading with some hysteresis. Thus, assuming
that same functional form of the descriptor can be used for loading and
unloading with different material parameter sets, we present the ma-
terial model results calibrated for the loading portion of the equibiaxial
and off biaxial testing in the current study. It is important to note that
Constant I1 tests cannot be used for such calibration due to the inherent
nature of the test and therefore, Constant invariant tests were not used
at all for parameter estimation. Fig. 2 shows the response curves gen-
erated during the loading phase for a selected wall sample from the
distal end of the vein and a valve sample for the “higher strain set” (i.e.,
maximum stretch greater than 1.5 for both directions) using the ex-
perimental data from constant invariant tests. The response curves for
the “higher strain set” as well as “lower strain set” showed similar
behavior of strain energy derivatives with respect to the invariants.
Therefore, we reported higher strain set part of the experimental study
and interested readers are referred to Kaul (2016) for response curves
on the “lower strain set.” Graphs A and C (or E and G) of Fig. 2 re-
present the variation ofW1 andWα with respect to I1 for constant values
of α mentioned in the index (i.e., α = 1.5, 1.6, and 1.7) for the wall (or
valve) tissue samples. Similarly, Graphs B and D (or F and H) of Fig. 2
represent the variation ofW1 andWα with respect to α for all constant I1
tests (i.e., I1 = 4.0, 4.1, 4.2, 4.3, and 4.4) for wall (or valve) tissue
samples. A functional form for the strain energy descriptor was then
obtained from the behavior of strain energy derivatives in the response
curves.

By examining the qualitative behaviors of these curves in Fig. 2, it
can be seen that all the curves in panels A-C and E-G are approximately
linear, while those in panels D and H are not. However, the non-linear
relationship between Wα and α in panel D of Fig. 2 for the wall tissue
samples can be better described using a second-order polynomial. The
curves in panel H of Fig. 2 for the valve tissue samples are highly non-
linear and it can be seen upon examination of the slope of the curve that
it is exponential in nature. Note that all eight valve tissue and 16 wall
tissue samples exhibited similar qualitative behavior in their response
curves, as shown above. Based on these observations, we found that a
five-parameter polynomial type strain energy descriptor given by

Humphrey et al. (1990a, 1990b) for the wall tissue and a three-para-
meter exponential type function given by May-Newman and Yin (1998)
for the valve tissue were the closest matching phenomenological
models in the literature which can explain the behavior of the tissues
which are shown in Eqs. (2) and (3).

= − + − + −

+ − − + −

W c α c α c I
c I α c I

( 1) ( 1) ( 3)
( 3)( 1) ( 3)

wall
1

2
2

3
3 1

4 1 5 1
2 (2)

= − + − −W c c I c α(exp( ( 3) ( 1) ) 1)valve
0 1 1

2
2

4 (3)

The restrictions applied to the parameters require all parameters to
be positive except for c4 of Wwall, which is negative, stemming from the
negative slopes of the curves in panels B and C of Fig. 2. For further
clarification, interested readers are referred to the study published by
Humphrey et al. (1990a, 1990b).

After selecting the descriptor function, the next step of the modeling
process requires finding material parameter values (five for Wwall and
three for Wvalve). Best fit values are obtained for each sample separately
by minimizing the sum of the squares of the residuals (Yin et al., 1986)
using the Powell's method algorithm (Press et al., 1992). The residual is
defined as the error between the experimental measured and theoreti-
cally predicted Cauchy stress.

∑= −
=

χ y t[ ]
i

n
i i2

1

2

Here yi is stress at the ith data point, and ti is the Cauchy stress from the
fitted function evaluated at the corresponding stretch ratio. For model
predicted stress, the expressions can be found by substituting the energy
descriptor in the general constitutive relation in Eq. (1). Model pre-
dicted stress expressions for polynomial type descriptors from Eq. (2)
are as follow:

= − + − + −

+ − + − + −

= − + − + −

c c α c I
λ c α c α c I

λ λ c c α c I

t

t

2(λ λ )[ ( 1) 2 ( 3)]
[2 ( 1) 3 ( 1) ( 3)]

2( )[ ( 1) 2 ( 3)]

wall

wall

11 1
2

3
2

3 4 5 1

1 1 2
2

4 1

22 2
2

3
2

3 4 5 1 (4)

Similarly, the expressions for model predicted stress for the ex-
ponential model in Eq. (3) were calculated as:

= − −

+ − − + −

= − − −

+ −

c c λ λ I
c c λ α c I c α

c c λ λ I c I
c α

t

t

(4 ( )( 3)
4 ( 1) )exp[ ( 3) ( 1) ]

4 ( )( 3)exp[ ( 3)
( 1) ]

valve

valve

11 0 1 1
2

3
2

1

0 2 1
3

1 1
2

2
4

22 0 1 2
2

3
2

1 1 1
2

2
4 (5)

For parameter estimation, a separate set of biaxial testing was

Fig. 2. Response curves for wall (A-D) and valve (E-H) samples where strain energy derivatives are presented in kPa. Panel A shows the variation of Wα with I1 at constant values of α
which are shown using three different colors. Same legend is used in Panel E, C and G. Similarly, curves for 5 values of I1 are shown in Panels C, D, F and H.

N. Kaul, H.-Y.S. Huang Journal of the Mechanical Behavior of Biomedical Materials 75 (2017) 50–57

53



conducted in which separate preconditioned tissues were subjected to
four off-axial and one equibiaxial stretching protocol consecutively (in
the order of Axial: Circumferential [A:C] for wall tissue samples or
Circumferential: Radial [C:R] for valve tissue sample = 2:1, 1:2, 1.5:1,
1:1.5, 1:1) where the ratio indicates the ratio of strains in the ortho-
gonal directions. A maximum of 70% true strain was selected for this
phase of biaxial testing.

For each tissue sample, a combination of three test protocols
(equibiaxial A:C or C:R = 1:1, off-axis A:C or C:R = 1:1.5, off-axis A:C
or C:R = 1.5:1) were used to determine the material parameters of twall

and tvalve (Eqs. (4) and (5). A total of 70 data points from fiber and
cross-fiber directions were taken for each protocol. R-squared values
are used to determine the level of fitness of the model to the data.

Convergence of the parameters was verified by using a range of
initial values for around two orders of magnitude for each coefficient.
For higher magnitude initial hypotheses, the algorithm was still con-
verging to the same material parameters but required multiple runs due
to local minima wells. To ensure that the material model is not over-
parameterized, we calculated the correlation matrix and ensured the
determinant of the matrix as well by checking if any unity element is
present in the matrix (Kaul, 2016).

To ensure the usefulness of the constitutive relation, we looked into
the predictive capability of the material parameter model. For this, we
evaluated how well the material parameters (determined from three
different protocols – 1:1, 1.5:1, 1:1.5) could predict the data from two
other off-axis protocols (1:2 and 2:1), which were not used, to find the
material parameters. In addition, a single representative group of
parameters (i.e., combined parameters) is also presented for each wall
(proximal and distal) and the valve tissue samples using the individual
material sets.

3. Results and discussion

As with the constant invariant testing, a total of 16 wall samples
(eight distal and eight proximal) and eight valve tissue samples un-
derwent biaxial testing. Best-fit parameters were calculated using the
methods discussed in the previous section. Table 1 shows the values of
five material parameters in polynomial type strain energy function for
all 16 samples of wall tissue. Table 2 shows the three parameters for the
exponential model along with correlation coefficients for all the valve
samples tested. High correlation coefficients for each sample indicate

how well the model predicts the experimental data. Fitting for three
testing ratios (i.e., 1:1, 1.5:1, 1:1.5) for one sample for each wall and
valve is shown in Fig. 3. Stress-stretch data along with the model fitting
for one of the wall tissue sample (W03D) is shown in Fig. 3A,C,E for the
three testing ratios, respectively. The axial direction appears to be
stiffer in all the cases with excellent model fitting. Correlation coeffi-
cients listed in Table 1 for the wall samples are evidence of good fit for
the wall tissue using the polynomial model Wwall. The presence of a
stiffer axial direction is always indicative of less interdependence of
properties between two orthogonal directions (i.e., axial and cir-
cumferential directions), irrespective of the loading ratio, and thus
suggests a more aligned, unidirectional network structure.

Fig. 3B,D,F shows the comparison between the experimental data
and model predicted stress for one of the valve tissue (V01) for the three
test ratios. While the exponential type model Wvalve is an acceptable
qualitative fit, quantitatively a prediction error of about 2 MPa at a
stretch value of 2 can be seen in Fig. 3D. It may also be noted that for
the valve tissue, radial directional properties take over and become
stiffer than in the circumferential direction, when the stretch in the
circumferential direction is increased (i.e. i.e. C:R = 1.5:1 and 2:1 in
Fig. 3F and Fig. 3H). This behavior points toward the intertwined
nature of fibers in the valves, instead of a single directional alignment.
The predictive ability of the parameters was checked by using the
parameters from Tables 1 and 2 to predict the other two sets of off-axis
test data (i.e., 1:2, 2:1) which were not used in the parameter estima-
tion. The predictive capability for the same two samples is also shown
in Figs. 3G-3J.

As can be seen from the fits and the correlation coefficient values,
the polynomial type function is an almost perfect model to predict the
behavior of the wall tissue (Figs. 3G and 3I; Table 1, Rx = 0.95 and Ry

= 0.98), whereas the exponential model used for valve tissue predicts
the qualitative nature of the behavior but shows a large amount of
prediction error in the fits (Figs. 3H and 3J; Table 2, Rx = 0.17 and Ry

= 0.55). In terms of predictive ability, it has a consistent error in the
circumferential direction.

The response curves for the wall (Fig. 2A-D) match very well to the
ones in the study by Humphrey et al. (1990a), but the response curves
for the valve, while exponential in nature, have some notable differ-
ences from the ones presented by May-Newman and Yin (1998) for
mitral valve. Hence, the prediction error suggests intrinsic biological
differences between arterial and venous systems which might be the
result of macro logical structural differences and are worth future ex-
ploration.

Material parameters provided from our study for venous valve tissue
differ from ones given by May-Newman for mitral valves (May-Newman
and Yin, 1998) by an order of 102 – 103 and by an order of 104 from the
parameters given for aortic valve tissue (May-Newman et al., 2009).
The wide differences with respect to aortic and mitral valves can be
attributed to the wide disparities in the maximum achievable stress
values (5–6 kPa for aortic valves, 0.2–0.6 MPa for mitral valves, and
3–6 MPa for venous valves), but the stark difference lies in the response

Table 1
Material parameters for 16 samples of wall tissues along with one set of representative
parameters (i.e., combined parameters) for each proximal wall tissue and distal wall
tissue. All constants have units of kPa.

Sample C1 C2 C3 C4 C5 Rx Ry

W01D 47.19 14.38 8.94 −13.64 4.26 1.00 0.99
W02D 26.50 16.39 3.40 −8.32 2.67 0.99 0.98
W03D 29.76 33.68 12.34 −9.90 3.82 1.00 0.99
W04D 4.25 32.30 11.52 −9.87 3.56 1.00 1.00
W05D 4.67 26.04 12.95 −13.31 4.68 1.00 1.00
W06D 5.60 26.25 6.18 −14.31 3.72 0.99 0.98
W07D 6.43 111.92 4.72 −32.12 7.68 0.93 0.94
W08D 17.06 16.31 10.81 −8.90 3.19 1.00 0.99
Combined parameters

(Distal)
9.49 42.58 7.75 −15.59 4.46 – –

W01P 43.74 19.70 6.91 −10.71 4.04 1.00 0.99
W02P 12.16 21.07 7.18 −7.30 2.19 0.99 0.98
W03P 30.08 31.97 0.10 −9.12 3.09 0.99 0.98
W04P 0.10 18.66 0.10 −0.44 3.20 0.91 0.86
W05P 3.62 21.27 2.71 −10.82 3.43 0.98 0.99
W06P 75.74 48.19 0.12 −58.47 12.25 0.96 0.83
W07P 13.73 58.34 0.10 −32.87 9.93 0.96 0.94
W08P 7.90 73.26 0.10 −32.93 6.97 0.92 0.80
Combined parameters

(Proximal)
30.66 27.96 1.97 −17.92 5.21 – –

Table 2
Material parameters for eight samples of valve tissues along with one set of representative
parameters (i.e., combined parameters). C0 has the units of kPa and C1, C2 are di-
mensionless.

Sample C0 C1 (× 10−2) C2 (× 10−2) Rx Ry

V01 472.70 4.30 34.00 0.95 0.93
V02 25.76 6.10 106.60 0.95 0.93
V03 185.43 7.10 30.30 0.90 0.93
V04 295.66 7.70 20.40 0.90 0.90
V05 66.83 3.70 185.90 0.97 0.71
V06 132.79 7.90 61.30 0.95 0.96
V07 40.36 4.40 170.70 0.96 0.75
V08 42.57 2.90 146.20 0.97 0.67
Combined parameters 112.28 5.90 109.00 – –
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curves observed between venous valves and aortic (or mitral) valves.
The mitral valve response curves have an exponential variation of W1

and Wα with both invariants at a low stretch range, whereas in the case
of venous valves, only Wα has such an exponential rise at stretches

higher than 1.5 (Fig. 2H). Moreover, W1 behaves almost linearly with I1
for venous valves but exponentially for aortic (May-Newman et al.,
2009) (or mitral (May-Newman and Yin, 1998)) valves. This might
indicate a large sudden uncramping of fibers in the case of mitral valves

Fig. 3. Plot of Cauchy stress vs stretch along with the fits using the individual material parameters for wall tissue (left) and a valve tissue (right). Experimental data for fiber direction
(axial [Ax] for wall tissue and circumferential [Ct] for valve tissue) is shown using square markers along with a solid fit line. Cross-fiber direction is shown using circular markers with a
dashed fit line (circumferential [Cr] for wall tissue and radial [Rad] for valve tissue). Subplots present data for separate biaxial tests.
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as compared to venous valves, whereas strain energy has more de-
pendence on the extent of deformation (I1) in mitral valves than in
venous valves, which can indicate a more plastic behavior of mitral
valves as compared to venous valves.

It is possible that the same exponential model with different ex-
ponents for I1 and α may provide better fitting results, though this was
outside the scope of the present study. However, these results indicate
that our assumption of fiber alignment in one direction (axial for wall
and circumferential for valve) holds good for the wall tissues whereas
for the valve, we deduce that the fibers might not be as highly aligned
as they are in the cases of wall or aorta valves. Instead, the fibers may
have a more entangled web-like structure. We began further in-
vestigation on the jugular valve leaflet microstructure tissue using im-
munohistology and confocal microscopy. Using the polynomial model
for the wall, we compared the strain energy levels between proximal
and distal wall tissues at the same stretch level. In all of the testing
ratios (equibiaxial or off-axial), we observed that the distal wall tissue
samples have more strain energy density per unit volume, which in-
dicates higher forces at the distal end as compared to the proximal end.
This may be attributed to the higher hemodynamic pressure at the
distal end of the vein.

Due to growing research groups in computational tissue mechanics,
and Fung's model to describe soft tissue mechanics has become one of
available materials laws from a commercialized finite element package
(i.e., ABAQUS FEA, Providence, Rhode Island). We also conducted
force-controlled experiments (C:R = 1:1, 3:1, 1:3) by using the rest of
24 valves, in additional to the three-parameter exponential model for
jugular valve leaflets. The experimental and modeling procedures are
detailed in Billiar (Billiar and Sacks, 2000), Sun (Martin and Sun, 2014;
Sun and Sacks, 2005), and Huang (Huang, 2004). We fitted measured
data with the most widely acceptable 10-parameter Fung's exponential
mode (Eq. 6).
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Using the correlation coefficient as the quantitative measure, our
results show that Fung's model also provided the same level of fitting
efficiency as the three-parameter exponential model. Table 3 shows the
parameters used for Fung's model, and Fig. 4 shows the comparison of
force controlled experimental data with Fung's model predicted stress
values. Note that second Piola-Kirchhoff stress vs. Green strain are used
in Fung's model (Fung, 1993; Huang, 2004; Sun and Sacks, 2005). We
have carefully converted our force and displacement data using de-
formation gradients to generate second Piola-Kirchhoff stress and Green
strain suited for the Fung's model. The parameters presented in Table 3
do not need any kinematic conversion when implementing into
ABAQUS.

Data from seven tissue specimens for each testing ratio were aver-
aged and fitted against Fung's model (as shown in Fig. 4A-C) resulting
in the parameters given in Table 3. No single specimen was able to
withstand all of the testing ratios (i.e. 1:1, 1:3, and 3:1) consecutively,
therefore it was impossible to represent all three testing ratios with a
single parameter set, whereas the three parameter exponential model
predicts all the testing ratios using one set of parameters to an accep-
table extent. Fig. 4A-C presents data up to a Green strain of 1.5, which is

equivalent to a 70% true strain for simplicity in comparison to the
displacement controlled tests fitted with the exponential model, where
the tearing strain was found to be about 70%. However, it is important
to note that the maximum tension of 200 N/m led to strains higher than
70% for the compliant radial direction of the tissue in some tests. The
parameters obtained in Table 3 are currently used in the finite element
analysis in our ongoing study. In all of the models presented, we also
provide one single set of parameters to represent the tissue behaviors to
use in a finite element method implementation, as shown in Tables 1
and 2.

There are some limitations to the study as well, which may coun-
teract the better predictive power of the phenomenological models.
First, to facilitate an understanding of venous valve tissue behavior, we
have chosen to use previously established models from the literature to
investigate how well they might apply to the tissue under study. Due to
the differences (or similarities) in response curves for valve tissue (or
wall tissue) compared to the published literature, using the same
functional expressions proved useful to a certain extent. However,
changing the exponents for I1 and α in the expression may provide
better results for the phenomenological models. The biggest implicit
assumption of this framework was the high unidirectional alignment of
fibers and further aligning of the fiber axis perfectly with the loading
axis. A perfect fiber axis may or may not exist and can vary slightly
from sample to sample, which can only be taken into account by
studying the structure of each sample before testing. Also, the align-
ment of the fiber and loading axes involves mounting the sample on the
mechanical tester and is prone to human error. A small deviation can
alter the experimental data greatly. Presently, our equipment does not
have the capability of measuring any shear stress which might occur
during testing. Great care has been taken while mounting the samples
so that the rakes align perfectly, but a misalignment in the rakes could
be responsible for erroneous measurements and model predictions.
Moreover, since the models are phenomenological in nature, it is dif-
ficult to relate the material parameters directly to a physical attribute of
the tissue. Therefore, while this model gives a good start to the study of
jugular venous tissue, it can also support any structurally motivated
future studies. The study also provides investigators with representative
material parameters to form a continuum model when such is required
for numerical analyses and computational simulations, which may be of
great help during the primary stages of bioprosthetic designs, valve-
replacement surgeries, and when investigating valvular diseases.

4. Conclusion

The primary aim of the study was to constitutively model the be-
havior of jugular vein wall tissue and valve leaflet tissue. Towards this
end, response curves were generated using numerical mathematical
framework to calculate W1 and Wα based on the constant invariant
testing as put forward by Humphrey et al. (1990a, 1990b). The beha-
vior of partial derivatives of strain energy came out almost linear in the
case of wall tissue (proximal and distal alike) and highly non-linear in
case of valve leaflet tissue. To explain this behavior, we selected two
different strain energy descriptors from the literature – Non-linear
polynomial to explain the behavior of wall (Eq. 2) and an exponential
behavior to best explain the characteristics of the valve leaflet tissue
(Eq. 3). Model parameters were calibrated based on additional sets of
equibiaxial and off axis biaxial testing for both energy descriptors. The

Table 3
Material parameters for the valve tissue using Fung's model.

Test Ratio C (MPa) A1 A2 A3 A4 A7 A8 A9 A10 A11 Rx Ry

1:1 4.020 0.086 0.055 0.127 0 0.112 0.063 0.010 0 0 0.976 0.961
3:1 1.098 1.605 0.246 0 0 0.7513 0.478 0.001 0 0 0.973 0.962
1:3 5.706 0 0.056 0.041 0 0.030 0.024 0.001 0 0 0.986 0.976
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individual fits were near perfect for the wall tissue, whereas in case of
the model predictions for valves, a consistent prediction error was ob-
served in circumferential direction in off-axis radial (2:1) stretch pro-
tocol for all the valve samples as can be seen in Fig. 3. Using the re-
maining test samples, Fung's model provided the same level of
correlation between the experimental data and model predicted data
for the valve tissue. These results from the current study can be helpful
in offering insight into the mechanical behavior of soft tissues. This
study can fill a critical gap in the basic science of venous tissues, as well
as serve as a springboard for innovation, informing approaches to the
treatment of venous valve diseases such as chronic venous insufficiency
by providing a framework for future finite element simulations.
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