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A B S T R A C T

Tendon-to-bone insertion tissues may be considered as functionally-graded connective tissues, providing a
gradual transition from soft tendon to hard bone tissue, and functioning to alleviate stress concentrations at the
junction of these tissues. The tendon-to-bone insertion tissues demonstrate pronounced viscoelastic behavior,
like many other biological tissues, and are designed by the nature to alleviate stress at physiological load rates
and strains states. In this paper we present experimental data showing that under biaxial tension tendon-to-bone
insertion demonstrates rate-dependent behavior and that stress-strain curves for the in-plane components of
stress and strain become less steep when strain rate is increased, contrary to a typical viscoelastic behavior,
where the opposite trend is observed. Such behavior may indicate the existence of a protective viscoelastic
mechanism reducing stress and strain during a sudden increase in mechanical loading, known to exist in some
biological tissues. The main purpose of the paper is to show that such viscoelastic stress reduction indeed
possible and is thermodynamically consistent. We, therefore, propose an anisotropic viscoelasticity model for
finite strain. We identify the range of parameters for this model which yield negative viscoelastic contribution
into in-plane stress under biaxial state of strain and simultaneously satisfy requirements of thermodynamics. We
also find optimal parameters maximizing the observed protective viscoelastic effect for this particular state of
strain. This model will be useful for testing and describing viscoelastic materials and for developing interfaces for
dissimilar materials, considering rate effect and multiaxial loadings.

1. Introduction

In this paper we consider the viscoelastic behavior of tendon-to-
bone insertion (enthesis), which is a transitional tissue connecting the
tendon and bone. Tendon is soft and highly anisotropic tissue, while
bone is hard and isotropic [1–3], therefore, their interface is extremely
prone to stress concentrations during physiological loadings like run-
ning and jumping, and even more during abrupt loadings such as im-
pact. It is the function of the insertion site to balance the mismatch in
the elastic moduli, dissipating stress away from the junction to prevent
injury of the joint tissues [4,5]. This protective function is possible due
to the smooth gradual transition of material properties and structural
features from tendon to bone tissues, including collagen fiber orienta-
tion, mineralization level and others [1,2,6,7]. Grading of composition
and material properties and its effect on the stress distribution was
considered in linear [2,8] and recently in nonlinear [3] settings. Es-
sentially, this protective mechanism should work at different complex
multiaxial loading states occurring physiologically and at different

loading rates. In addition, thermal stability and bending behaviors of
functional graded materials were also investigated [9–16], and these
developed models and analyses are helpful in better understanding of
complex structural materials, such as bone tissue.
It is well known that skeletal biological tissues demonstrate a sig-

nificant amount of viscoelasticity in their behavior [17–19]. In parti-
cular, the tendon to bone insertion viscoelasticity was reported in
Thomopoulos et al. [5]. Moreover, this viscoelastic behavior is non-
linear, i.e. the relaxation function is strain dependent [19–25] and often
anisotropic [26–29].
Typically, connective tissues are tested in a uniaxial tension setting

and an increase of stress with strain-rate is observed [5,22,23,30], as
schematically shown in Fig. 1. However, in our set of experiments it
was consistently observed that under multiaxial load conditions (e.g.,
equibiaxial constant strain rate stretching), the viscoelastic response is
qualitatively different, i.e., the stress-strain curve becomes less steep
with increase of strain rate, which suggests that the insertion site has
strain state dependent anisotropic viscoelastic behavior. We
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hypothesize here that the insertion site was evolutionary designed in a
way to dissipate stress more effectively under particular multiaxial
“physiological” loading states at high strain-rates, and that it may not
be that effective at other multiaxial strain states. To support this hy-
pothesis we propose a thermodynamically consistent linear anisotropic
viscoelasticity framework and show that observed behavior doesn't
contradict requirements of thermodynamics. We note that viscoelasti-
city model is linear in the sense that a relaxation function doesn't de-
pend on the strain level, at same time elastic response maybe nonlinear
and capable of large deformations.
We describe next the details of experimental setup and results. A set

of porcine digital flexor insertion regions was dissected from the joint,
details on specimen preparation, microstructural data are presented
and gripping protocols are presented in references [7] and [31]. Each
specimen was subjected to equibiaxial displacement-control mechanical
testing at two different strain-rates: 7%/s and 15%/s (Fig. 2). The tissue
was placed so that the preferred direction of collagen fibers (transverse
direction) points in the direction of X-axis (Fig. 2(a)). The reaction force
data and displacements were recorded and the corresponding First
Piola–Kirchhoff stress-true strain relationships for normal stress

component in X and Y directions were calculated based on the sample
dimensions, the averaged over a set of 7 experiments stress-strain
curves are presented on Fig. 2(b). Since tendon-to-bone insertion tissue
is anisotropic, the obtained stresses in two directions were different and
depicted by circles and triangles correspondingly. Black lines corre-
spond to 7%/s strain rate, and red lines correspond to 15%/s strain-
rate.
The observed stress-strain relationships were highly nonlinear. The

large strains are induced mostly on the tendon, not mineralized part,
while bone part experienced much lower strains [3]. The exponential
growth of stresses within the 30–50% strain region may be explained by
gradual recruitment of collagen fibers into tension [17,32]. The fol-
lowing reduction in the stress growth was probably due to the imperfect
clamping and slip of the tissue (Fig. 2(b)) or due to the plasticity of
damage, we are not attempting to model this behavior in this study, but
concentrate our attention only on the viscoelastic response. The results
also revealed a qualitatively different trend in the stress-strain re-
lationship as the strain rate increased comparing to a typical uniaxial
tension test. Namely, the results from the biaxial testing demonstrated
that the increase in strain-rate caused lower stresses at the same strain
level, which is opposite to what happens in a typical uniaxial tension
test and points on the activation of a protective viscoelastic mechanism
under equibiaxial tension conditions. The viscoelastic contribution in
stress became negative, reducing the overall stress and possibly pro-
tecting the tissue from damage and rupture. Similar mechanisms are
known to exist in blood vessels, where viscoelasticity reduces stress and
strains of the vessel wall during a sudden mechanical loading, for ex-
ample, during acute hypertension [33]. Zhang et al. [34] reported nu-
merical simulations with a quasi-linear viscoelastic model and the vis-
coelasticity of arteries reduced stresses and strains, therefore increasing
fatigue life of the blood vessels. To the best of our knowledge, such
behavior was not observed previously in skeletal biological tissues,
particularly, in tendon-to-bone insertion.
We would like to note here also that degradation of biological tis-

sues is also known to be strain state sensitive [35–37]. Under particular
ratios of principal stretches, for example, the rate of degradation of the
heart valve leaflets is significantly reduced [38].
Various microscopic mechanisms may contribute to the gross be-

havior of the insertion tissue, including individual viscoelastic proper-
ties of collagen fibrils [39], substantial fluid flow through the fiber
network due to fibers unfolding and readjustments, transient network
connections – so called crosslinks, which may break and rebond during
deformation and after load is removed [17,18], as shown in Fig. 3. The
exact microscopic mechanism is unknown and one may only speculate
that stretching tissue in the off-axial direction moves fibers (which are
being stretched at same time in the axial direction) away from each

Fig. 1. Typical rate-dependent behavior under uniaxial tension, observed in
tendons: stress level at the same strain increases with higher strain-rates.

Fig. 2. (a) Biaxial mechanical testing setup. (b) Averaged rate-dependent re-
sponse of enthesis under displacement-controlled equibiaxial extension testing
at two different strain-rates.

Fig. 3. Brightfield images at 100 x magnification (water immersion) obtained
using a Zeiss Axioimager (Zeiss Inc., Germany) microscope for tendon sections.
Possible microscopic mechanisms for viscoelastic behavior of soft biological
tissues: viscoelasticity of components such as fibers itself and transient con-
nections between them as well as fluid flow (white space) within fibers net-
work.
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other and breaks the cross-link bonds between them, which may restore
in the new configuration, and reduces friction between unfolding col-
lagen fibers.
Because there is no good understanding of all the underlying vis-

coelasticity mechanisms and how their interplay at different scales
contribute to the gross viscoelasticity of biological tissues, in this paper
we considered a gross phenomenological finite strain anisotropic vis-
coelasticity model of tendon-to-bone insertion tissue and showed that
experimentally observed viscoelastic behavior may be obtained within
this framework. We chose the simplest hereditary model based on the
Boltzman superposition principle, also known as finite strain linear
viscoelasticity [19,20,29,40], and formulated it in the reference con-
figuration, assuming finite strains. To find parameters providing the
increase of stress level, described above when increasing strain-rate
under uniaxial tension (Fig. 1) and simultaneously decrease the stress
level when increasing strain-rate under biaxial tension (Fig. 2(b)), we
considered first uniaxial and biaxial states of strain and identified their
essential differences, then we formulated a viscoelastic model and ob-
tained parameters providing desired mechanical behaviors. Because we
chose a simple superposition model, the viscoelasticity would be linear
in the sense that the relaxation function did not depend on the strains
magnitude. In principle, a very popular quasi-linear viscoelastic model
might also be considered with the Gasser-Ogden-Holzapfel (GOH) [32]
or Fung's hyperelastic function [41] for biological tissues. However,
such analysis would be more complicated and less insight would be
obtained, and it would still be linear that the relaxation function did not
depend on the strain magnitude [22,29].
The model proposed here will be useful to analyze and characterize

various viscoelastic tissues with anisotropic viscoelasticity, design ma-
terials with desired anisotropic viscoelastic behavior and to design in-
terfaces to connect dissimilar materials, considering rate effects and
multiaxial loadings.

2. Method

The experiments described above were conducted under different
states of strain and resulted in a principally different mechanical re-
sponse. In this section, we considered both states of uniaxial and biaxial
strains and identified the essential differences between them. We as-
sumed that the tendon-to-bone insertion tissue was incompressible,
which is a common assumption for biological soft tissues [18]. Then for
both states of strains, the deformation gradient and corresponding
Green–Lagrange strain were written in a very simple form, using only
one parameter – stretch λ. We assumed that stretch was a linear func-
tion of time = t( ) (or, equivalently, the time derivative of stretch
was constant = const such that =(0) 1.
Consider first a homogeneous uniaxial tension in the X-direction of

the incompressible specimen. The deformation gradient is as follows:

=F
0 0

0 1/ 0
0 0 1/

u

(1)

and the corresponding Green–Lagrange strain tensor is

=E
1 0 0

0 1/ 1 0
0 0 1/ 1

u
2

(2)

The first diagonal component of the strain tensor =E 1u
11

2 is
monotonically increasing in tension, and other two diagonal compo-
nents = =E E 1/ 1u u

22 33 are monotonically decreasing.
Consider next an equibiaxial tension of an incompressible specimen

in X and Y directions, then deformation gradient s

=F
0 0

0 0
0 0 1/

b
2 (3)

and corresponding Green–Lagrange strain tensor is

=E
1 0 0

0 1 0
0 0 1/ 1

b
2

2

4 (4)

Here the first two diagonal components = =E E 1b b
11 22

2 are in-
creasing monotonically, while the third component is decreasing
monotonically. Therefore, the situation is qualitatively similar to the
linear case considered [3]: if we restrict attention on the XY plane only
and disregard Z-components of strain (out-of-plane), then the only
difference between uniaxial and biaxial tension states is the difference
in the second diagonal components: E b

22 is an increasing function of
stretch, while E u

22 is a decreasing function of stretch; however now the
components change nonlinearly with time, but still monotonic.
In the uniaxial tension (along the preferred collagen fiber direction),

the other two directions are being shrunken due to the in-
compressibility. Neighboring collagen fibers are pushed to each other.
This might increase friction between neighboring fibers while they slide
and unfolded, also more cross-links may be formed. On the other hand,
collagen fibers with the preferred orientation in X-direction are pulled
away from each other in the Y direction under the biaxial tension,
which reduces friction and may also brake transient bonds between
neighboring collagen fibers.
Next, we exploit these differences of strain states to obtain experi-

mentally observed viscoelastic response of tendon-to-bone insertion
specimen.

2.1. Finite strain linear viscoelasticity: Boltzmann superposition

In this section, we propose a simple anisotropic viscoelastic model
based on the hereditary integral and Bolzmann Superposition principle
[19,40]. We assumed additive decomposition of the second Piola–-
Kirchhoff stress into purely elastic and viscoelastic contributions
[20,27,29,42]

= +S S S ,IJ IJ
e

IJ
v (5)

where the elastic contribution follows from the elastic strain energy
potential,

=S W C
C

2 ( )
IJ
e IJ

IJ (6)

For example, the GOH [32] model may be chosen as it was suc-
cessfully used to model the anisotropic viscoelasticity of tendon-to-bone
insertion with spatially graded material and structural properties [3],
and the viscoelastic contribution is defined according to the Bolzmann
superposition principle [40]:

=S g t E d( ) ,IJ
v

t

IJLK
LK

0 (7)

where g t( )IJLK is an anisotropic relaxation function.
For the uniaxial and biaxial experimental set up, the

Green–Lagrange strain tensor depends on the stretch only and the time
derivative may be written as

= =

=

S G t E d E G t d

g E

( ) ( )

,

IJ
v

t

IJLK
LK LK

t

IJLK

IJLK
LK

0 0

(8)

where the condition of a constant stretch rate = const was assumed
and =g G t d( )IJLK

t
IJLK0 .

Differentiating Eqs. (2) and (4) for biaxial and uniaxial stretch tests
we have following expressions:
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=E 2
0 0

0 0
0 0 2/

b

5 (9)

and

=E 2 0 0
0 1/ 0
0 0 1/

.
u

2

2 (10)

At this point it is convenient to rewrite stress and strain tensors in
the vector notation:

= =S S S S S S E E E E E ES E[ , , , , , ], [ , , , , , ].11 22 33 23 13 12 11 22 33 23 13 12 (11)

with

=E 2[ , , 2/ , 0, 0, 0]
b

5
(12)

and

=E 2[ , 1/2 , 1/2 , 0, 0, 0].
u

2 2
(13)

Then the stress-strain relationship may be written in the compressed
matrix form as follows:

=S g E ,v v
(14)

where g′v is the constitutive ‘viscoelastic matrix’ matrix defining the
rate-dependent component of the stress. We assume a general case of
orthotropic symmetry for the viscoelastic matrix:

=

g g g
g g g

g g g

g

g

g

g

0 0 0
0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

v

v v v

v v v

v v v

v

v

v

11 12 13

11 22 23

13 23 33

44

55

66 (15)

Without loss of generality we may rewrite it as follows:

= =g g

g g
g g g
g g g

g
g

g

g g

1 0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

v v v v

v v

v v v

v v v

v

v

v

11 11

12 13

11 22 23

13 23 33

44

55

66 (16)

The matrix gv should be positive semi-definite to satisfy the re-
quirements of thermodynamics [43,44], i.e., all eigenvalues from Eq.
(16) should be positive.
We note immediately that if = gg Iv v

11 , where I is a 6×6 unity
matrix, then on one hand g v

11 should be positive to satisfy thermo-
dynamic requirement, on the other hand, only negative g v

11 would result
in negative viscoelastic contributions in stress values under biaxial
tension (the stress contribution would be negative in uniaxial stress as
well), which contradicts the first condition. It suggests that it is not
possible to obtain the desired effects in the realm of isotropic viscoe-
lasticity. Therefore, we considered anisotropic cases in the next section.

2.2. Tailoring the anisotropic viscoelastic matrix

In this section, we investigate if it is possible to identify coefficients
of the matrix gvthat yield positive, rate-dependent contribution of
stresses under uniaxial tension and a negative contribution of stresses
under biaxial testing for all values of λ within limits 1≤ λ≤ λmax. With
the lower limit, we restrict our attention only on the tension test; with

the upper limit we include physiological loading of the tendon-to-bone
insertion tissues [22]. To do so, we first explicitly wrote rate-dependent
stresses for both tests. For the uniaxial tension,

=

g g
g g g
g g gS 2

1 /2 /2
/2 /2
/2 /2

0
0
0

uv

12
3

13
3

12 22
3

23
3

13 23
3

33
3

(17)

and for biaxial tension,

=

+
+
+

g g
g g g
g g gS 2

1 2 /
2 /
2 /

0
0
0

bv

12 13
6

12 22 23
6

13 23 33
6

(18)

The described uniaxial behavior implies the positive viscoelastic
contribution into stress components (condition 1) is as follows:

= = >c S g g/2 1 /2 /2 0uv
1 1 12

3
13

3 (19)

The other stress components are typically unknown in the uniaxial
test and not relevant for our purposes. Biaxial behavior implies that
negative viscoelastic stress components S b v

1 and S b v
2 (condition 2 and

condition 3) could be written as follows:

= = + <c S g g/2 1 2 / 0b v
2 1 12 13

6 (20)

= = + <c S g g g/2 2 / 0,b v
3 2 12 22 23

6 (21)

while other components are unknown and not relevant.
Therefore, to obtain experimentally observed viscoelastic behavior

conditions c1, c2 and c3, additionally to the semi-positive definiteness of
the viscoelasticity matrix, gv must be satisfied for all possible values of
stretch 1≤ λ≤ λmax. From the forms of c1 − c2 Eqs. (19) and (20), we
can see that terms with coefficient g12 change signs if the state of strain
is switched from the biaxial to the uniaxial stretches with a negative
sign in c1 in the uniaxial tension and with positive sign in c2 and c3 in
biaxial tensions. Therefore, to obtain the described experimental be-
havior, g12 should be negative and as large as possible in its magnitude.
Terms with coefficients g13, g23 contribute with negative sign in both
biaxial and uniaxial tension, and increasing their values would also
contribute to the negative viscoelastic stress under biaxial tension.

Case 1
First, we consider the simplest possible case with g12< 0,

g13= g23= 0. The matrix gv takes form as follows:

= g

g
g

g
g

g

g

1 0 0 0 0
1 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

v v

v

v

v

v

v

11

12

12

44

55

66 (22)

Its eigenvalues are

= +g g g g g[1, 1 , 1 , , , ]12 12 44 55 66 (23)

To keep all eigenvalues positive, the condition |g12|≤ 1 must hold.
However, if we look now at conditions c1− c3 Eqs. (19)–(21):

= >c g1 /2 01 12 (24)

= = + <c c g1 02 3 12 (25)

They may not be satisfied simultaneously, and the desired viscoe-
lastic behavior may not be obtained with the chosen form of the vis-
coelasticity matrix in Eq. (22).
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Case 2
Therefore, we consider a more complex case g13= g23> 0,

= g

g g
g g g
g g g

g
g

g

g

1 0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

v v

v v

v v v

v v v

v

v

v

11

12 13

11 22 13

13 13 33

44

55

66 (26)

We also assume that = =g g 122 33 , and the eigenvalues become as
follows:

= + + + + +g g g g g g g

g g g

[1 , 1 /2 8 /2, 1 /2 8

/2, , , ]
12 12 12

2
13
2

12 12
2

13
2

44 55 66 (27)

It is easy to see that only eigenvalue η3 may become negative, and it
occurs under the following condition:

+ + <g g g1 /2 8 /2 012 12
2

13
2

(28)

Fig. 4(a) shows eigenvalue η3 as a function of coefficients g12 and
g13. Fig. 4(b) shows the region where η3 is positive, suggesting that any
pair of g12 and g13 from this region correspond to a physically possible
viscoelastic matrix gv.
Therefore, we will investigate if it is possible to satisfy simulta-

neously conditions c1–c3 which take forms as follows:

= >c g g1 /(2 ) /(2 ) 01 12
3

13
3 (29)

= = + <c c g g1 2 /( ) 02 3 12 13
6 (30)

and η3>=0. For this condition, we may consider the following
minimization problem:

=
>

c c g g
subject to
min ( , )

0
2 2 12 13

3 (31)

This problem may be solved using Maple's nonlinear optimization
function NLPSolve, which yield values as follows:

= =g g0.996, 0.0439.opt opt
12 13 (32)

With these values, the condition c1 is as follows:

= +c g g( , ) 1
2

(2 0.952) ,opt opt
1 12 13

3

3 (33)

and it is positive for all positive λ, which corresponds to the positive
viscoelastic stress contributions under uniaxial tension. Conditions
c2= c3 are as follows:

=c g g( , ) 0.004 0.088opt opt
2 12 13

6

6 (34)

c2 as a function of λ is shown in Fig. 5 and is negative for relatively
small λ. Therefore, for all λ in the range 1≤ λ<1.674, the matrix gv

with coefficients in Eq. (32) will result in the negative viscoelastic
contribution under a biaxial tension test. This range includes physio-
logical values of stretch, which are estimated at about 10% in [23]. By
selecting appropriate values for the coefficient g v

11 in Eq. (26) and fitting
parameters in the strain energy, one may obtain viscoelastic behavior as
shown in Fig. 2(b).

3. Discussion

We have reported a rate dependent mechanical response of tendon-
to -bone insertion tissue: under the biaxial tension setting the stress
decreases with the increase in strain-rate (Fig. 2), while typically under
uniaxial tension setting stress increases with the increase in strain-rate.
This points to an existence of a protective mechanism developed by
nature to protect the insertion site and surrounding tissues from da-
mage and rupture under high-rate loads. This mechanism is essentially
anisotropic as it is activated under biaxial tension, which is closer to
physiological conditions of complex multiaxial loading, and not seen
under uniaxial tension tests. We therefore, hypothesized that the in-
sertion site tissue is designed in such a way that it has optimized re-
sponse to a particular, physiologic state of strain (i.e., ratio of principal
stretches), and doesn't dissipate stress as good at other states of strain.
However, we tested tissue only under equibiaxial test conditions, and it
is not clear what exactly multiaxial state of strain the tissue is optimized
for. The tissue might be optimized for the state of strain when principal
stretches are not equal, and it requires further investigation. We make
also a parallel with similar protective mechanisms in biological tissues’
degradation under multiaxial state of strain [35–37] and with protec-
tive mechanism in vessel walls [34].

Fig. 4. (a) Eigenvalue η3 as a function of g12 and g13. (b) The region on the plane where η3 was positive.

Fig. 5. Condition c2 as a function of λ.
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The observed mechanical viscoelastic response is unusual: viscoe-
lasticity results in a gross negative stress contribution while typically it
gives positive stress contribution, and to the best of our knowledge, it
was not observed nor modeled for connective tissues. The mentioned
protective effect in blood vessel wall tissue [34] was investigated in the
setting when both stress and strains reduce due to the viscoelasticity,
and it is not clear what will happen at the same strains, if stress will
reduce at the same strain but increased strain rate and or if it will in-
crease, as typically observed in experiments.
To put theoretical grounds under the observed phenomena we have

proposed a simplest anisotropic finite strain viscoelasticity model by
extending previously developed model for small strain [3]. Its simpli-
city allowed us to conduct analytical study and provided deep insight
into the theoretical nature of the negative viscoelastic stress contribu-
tion. We found a region of parameters for this model which both satisfy
thermodynamics requirements (which gives the model a physical sense)
and provide negative viscoelastic contribution into stress according to
the experimental observations for finite strains in the physiological
limits (Figs. 4 and 5), we also found optimal values of the parameters,
which maximize negative viscoelastic contribution under a given state
of strain. It is important to note that for other states of strain the region
of admissible values and optimal values of parameters would be dif-
ferent [3].
The proposed model is phenomenological and describes macro-

scopic viscoelastic behavior of the tendon-to-bone insertion tissues.
Various microscopic mechanisms may contribute to the gross viscoe-
lastic behavior, including the collagen fibrils viscoelasticity, dynamic
cross-links between fibers, flow fluid and others. However, currently
there is no data on how the hierarchical structure of the constituents
and different microscopic viscoelastic mechanisms interplay to result in
a gross protective viscoelastic behavior.
The proposed model is strain state dependent only in the sense of

anisotropy, but is not sensitive to the magnitude of the strain, while
biological tissues are typically reported to have strain-dependent be-
haviors, i.e., nonlinear viscoelasticity [22,29]. Our model can be gen-
eralized to account for the strain magnitude dependence, however, at
this point due to very limited experimental data it wouldn't be possible
to validate such a model and it is necessary to obtain more experimental
data first.
Our model may be used to setup a finite element simulation of a

graded material distribution to consider the effect of materials prop-
erties and structure grading on the stress level under different strain
rates, as it is done for the rate independent case in Kuznetsov et al. [3].
However, this requires implementation of anisotropic viscoelasticity.
Such models will be very useful to characterize and design anisotropic
viscoelastic tissues and interfaces connecting dissimilar materials.

4. Conclusions

Tendon-to-bone insertion is highly inhomogeneous material devel-
oped by nature to dissipate stress away from the interface. Its aniso-
tropic biomechanical functions depend intimately on the regional bio-
chemical composition and microstructure. Importantly, this tissue has
to work at different strain rates with increased efficiency at physiolo-
gical strain rates and multiaxial loading. Experimental observation of
reduction of stress level with increased strain rate under biaxial tension
setting was reported which points on a protective viscoelastic me-
chanism reducing stress at higher strains. To the best of our knowledge
such behavior was not reported for connective biological tissues. A
theoretical anisotropic viscoelastic model for finite strains was devel-
oped and was shown to yield observed viscoelastic behavior for a set of
parameters from a finite region. From this region, one may find para-
meters which would maximize the protective effect of stress reduction.
This model may be used in finite element simulations of graded mate-
rial and structural parameters in tendon-to-bone insertion and other
interfaces; it will be useful to design implants for the damaged tendon-

to-bone insertion and develop interfaces for dissimilar materials, taking
into account rate effect and multiaxial loadings.
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