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a b s t r a c t

The capacity loss and cycling aging of lithium-ion batteries at high (dis)charging rate (C-rate) hinders the
development of emerging technologies. To improve the performance of Li-ion batteries, it is important to
understand the coupling effect of the mechanical behaviors and the electrochemical response of elec-
trodes, as the capacity loss and cycling aging are related to the mechanics of electrodes during (dis)charg-
ing. Many studies have formulated the distribution of stress, strain and lithium-ion fraction of electrodes
during lithiation/delithiation. However, few of them reported a self-consistent formulation that contains
mechanical-diffusional-electrochemical coupling effects, solid viscosity, and diffusion-induced creep for
an electrode with large deformation under non-equilibrium process. This paper considers the electrode of
a Li-ion battery as a solid solution system. Based on continuum mechanics, non-equilibrium thermody-
namics and variational theory, we develop a generalized theory to describe the variations of stress distri-
bution, electrode material deformation and lithium-ion fractions of the solid solution system over a non-
equilibrium process. The finite deformation, mass transfer, phase transformation, chemical reaction and
electrical potential of the system are coupled with each other in a fully self-consistent formulation. We
apply the developed theory to numerically simulate a Sn anode particle using the finite difference
method. Our results compare the influences of different C-rates on the non-equilibrium process of the
anode particle. Higher C-rate corresponds to stronger dissipation effects including faster plastic deforma-
tion, larger viscous stress, more polarization in the electrical potential, longer relaxation time and less
electrical energy. With the formulation and simulation of the non-equilibrium process, this study refines
our understanding of the mechanical-diffusional-electrochemical coupling effect in Li-ion batteries with
high C-rate.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The performance and life of Li-ion batteries are related to
mechanical effects of electrodes during (dis)charging (Vetter
et al., 2005). For example, Wang et al. (2005) presented the
crack-induced capacity fade of LiFePO4 during cycling. Piper et al.
(2013) reported that compressive stress may decrease the effective
specific capacity of Si anodes. Cycling-induced crack propagation of
a single crystal Si anode was observed and simulated by Shi et al.
(2016). For decreasing the capacity loss and improving the lifetime
of Li-ion batteries, it is important to understand the relation
between the mechanical behaviors and the electrochemical
responses of Li-ion batteries.
The mechanical behaviors of electrodes include the stress and
deformation induced by the diffusion of Li. Based on the assump-
tions of infinitesimal deformation and diffusion of Li governed by
Fick’s law, the diffusion-induced stress of a spherical electrode par-
ticle was analytically solved by Cheng and Verbrugge (2009). Due
to the simplicity of Fick’s law, the diffusion-induced stress may
be simulated conveniently for more complicated geometry of elec-
trodes (Kim and Huang, 2016; Kim et al., 2018, 2019). However,
Fick’s law neglects the influence of the mechanical behaviors on
the diffusion of Li. This influence may be reflected by the
mechanical-chemical potential of Li which can be considered as
part of the driving force of Li diffusion. To fully present the
mechanical-diffusional coupling effect, some studies introduced
the stress of electrode into their chemical potential models of Li
(Christensen and Newman, 2006; Bower et al., 2011; Di Leo
et al., 2014; Bucci et al., 2017). The stress-induced chemical poten-
tial of solid was initiated by Larché and Cahn (1973) (Eq. (1.1)):
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lr ¼ �1
3
VPMTr rð Þ ð1:1Þ

where lr is stress-induced chemical potential, VPM is partial molar
volume, Tr is trace operator, and r is stress tensor. The Larche-Cahn
model is derived from the linear theory of elasticity and thus should
be used based on the assumption of infinitesimal deformation.
However, many alloy anodes of Li-ion batteries have large volume
expansion and contraction during lithiation and delithiation,
respectively (Huggins, 2008; Qi et al., 2014). In studies of modeling
the finite deformation of electrodes, the mechanical-chemical
potentials were formulated based on the Larche-Cahn model, even
though the assumption of infinitesimal deformation is not possible
(Bower et al., 2011a, 2015b, 2015c; Di Leo et al., 2014, 2015; Wen
et al., 2018; Dal and Miehe, 2015; Bucci et al., 2016). A formulation
for the mechanical-diffusional coupling effect of the electrodes with
finite deformation is still unclear.

The diffusion of Li in an electrode is coupled with not only the
mechanical behaviors but also the electrical potential of the elec-
trode since the electrochemical reaction is related to the
mechanical-chemical potential of Li. The electrode at a higher
(dis)charging rate (C-rate) has more capacity loss (Kang and
Ceder, 2009) and cycling aging (Xie et al., 2015), which may be
related to the viscous effect of the electrode via the mechanical-
chemical potential during faster deformation at the higher C-rate.
The dissipation effect could become significant with larger defor-
mation in electrodes because of their faster strain rates. However,
few studies formulated the mechanical-diffusional-electrochemi
cal coupling effect with solid viscosity. To this end, we adapt a
non-equilibrium process with finite deformation to fully describe
electrodes exhibiting different evolutions of strain and stress dur-
ing lithiation/delithiation at different C-rates.

In addition, the diffusion of Li atoms can form creep strain or
convection in an electrode continuum. On the scale of continuum,
different atoms are indistinguishable. The stress of an electrode
should be the statistical average of the atom interaction in the elec-
trode (Thompson et al., 2009). Hence Li atoms should share the
stress and be treated as a part of the electrode. The electrode mass
flow induced by Li diffusion corresponds to a partial deformation of
the electrode continuum. This deformation can be considered as
diffusion-induced creep strain (Jones, 1965). In the measurement
from Pharr et al. (2014), the variation of electrical potential of a
Si film electrode demonstrated transient trend reversal with each
change of C-rate. This phenomenon may be related to the diffusion
induced creep strain, as C-rate can directly influence the diffusion-
induced creep strain. Selecting the matrix of the electrode, such as
Si atoms of Si alloy anode, as the material configuration of defor-
mation may mathematically obviate the diffusion-induced creep
strain, meanwhile the convection induced by the mass flow must
be included in the formulation of electrodes. To close this knowl-
edge gap, we consider the diffusion-induced creep strain and/or
the convection effect of electrodes in the current study.

Furthermore, the diffusion of Li can generate phase separation
for some electrode materials, such as LiFePO4, graphite and Si
(Huggins, 2008; Whittingham, 2004). The diffusion-induced stress
may be influenced by the phase separation (Song et al., 2015).
Many studies that considered the phase separation and the
mechanical-diffusional coupling effect incorporate a sharp inter-
face between Li-rich phase and Li-poor phase (Bower et al., 2015;
ChiuHuang and Shadow Huang, 2013; Cui et al., 2013), but the
sharp interface can only be applied to special geometries such as
film or spherical electrodes. To address this current limitation,
our study includes continuous phase field in the formulation of
electrodes to present the phase separation for general geometries.

In this paper, the electrodes of Li-ion batteries are considered as
solid solution systems. Based on the continuum mechanics (Sedov,
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1997, 1965), non-equilibrium thermodynamics (de Groot and
Mazur, 2011) and variational theory (Gelfand and Fomin, 2000), a
formulation including convection effect is developed for the non-
equilibrium process of a solid solution system with finite deforma-
tion. Mechanics, diffusion, phase separation, chemical reaction and
electrical potential are fully coupled with each other in the formu-
lation. We start with basic axioms such as mass conservation and
the 1st law of thermodynamics to develop a general theory (Sec-
tion 2.1). The general theory is then applied to a simplified Li-Sn
system (Section 2.2). A system of equations is numerically solved
for a Sn anode particle with an initial spherical cap geometry (Sec-
tion 2.3). Our goal is to use a rigorous mathematical formulation to
develop a generalized method to describe evolutions of
electrochemical-mechanical behaviors of electrodes during (dis)
charging at various C-rates.
2. Method

2.1. General theory

The electrodes of Li-ion batteries can be considered as continu-
ous solid solution systems, in which every component has finite
deformation due to the volume change and mass transfer during
(dis)charging. In this paper, the finite deformation of an electrode
system is formulated based on metric tensor (Sedov, 1997) instead
of deformation gradient tensor. The deformed configurations of the
solution components in the electrode are considered as deformed
metric spaces with curvilinear coordinate frames, where the com-
ponents of tensors generally could be covariant or contravariant.
The concepts of metric tensor and covariant/contravariant compo-
nents of tensors are briefly introduced in Appendix A1. Some ter-
minologies and tensor indices are defined below: Reference space
is used to refer a metric space selected for describing the compo-
nents and basis of tensors. The operators and the tensor compo-
nents are for the reference space unless otherwise specified. Lab
space is used to refer an inertial Euclidean space with a static met-
ric. Moreover, lowercase English letters, uppercase English or
Greek letters are used with superscripts/subscripts in this paper,
and details are as follows:

a. Lowercase English letters. If there is no bracket, these items
are the tensors’ spatial indices, and they obey Einstein’s
summation convention. Superscripts indicate contravariant
components, and subscripts indicate covariant components.

b. Uppercase English or Greek letters. Normal superscripts/-
subscripts of a variable. They are not indices and do not obey
Einstein’s summation convention.

c. Within brackets. Indices that do not obey Einstein’s summa-
tion convention.

2.1.1. Mass conservation and kinematics of continuums for solution
systems

A solution system is composed of different matter components
k. Every component corresponds to an individual continuous met-
ric space, which can move and deform following the movement of
a corresponding component relative to a static space. In general,
due to the movement of the components, the coordinate frames
of the corresponding spaces are curvilinear. We may select the
metric space corresponding to any component as the reference
space, in which the Lagrangian coordinate is used for the selected
component and the Eulerian coordinate is used for all other com-
ponents. In this paper, the term ‘‘velocity” is the velocity relative
to the selected reference space unless otherwise specified. In addi-
tion, the lab space is necessary for describing the deformation of a
solution system.
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Based on mass conservation, the divergence theorem and the
chain rule yield equation (2.1.1) used for the density change in
component k. The derivation steps are shown in Appendix A2. As
shown in equation (2.1.1), the local change rate in the density for
component k is caused by the convective change rate of the density

r � q kð Þv kð Þ
� �

, the deformation of the reference space r � v�, and

local chemical reactions
P

jn
jð Þ
kð ÞJ

jð Þ.

@q kð Þ
@t

þr � q kð Þv kð Þ
� �

þ q kð Þr � v� ¼
X
j

n jð Þ
kð ÞJ

jð Þ ð2:1:1Þ

where q kð Þ is the mass density of component k, v kð Þ is the velocity of
component k in the solution system, r� is divergence operator, v� is

the velocity of the reference space relative to the lab space, n jð Þ
kð Þ is the

mass stoichiometric ratio of component k in chemical reaction j,
which is less than zero for the components on the left of the chem-

ical equation, and J jð Þ is the chemical reaction mass rate of reactionj.
To describe the diffusion of components in a solution system,

we introduce a mass center continuum for the solution system,
in which the density and velocity are defined as follows:

q ¼
X
k

q kð Þ ð2:1:2Þ

qv ¼
X
k

q kð Þv kð Þ ð2:1:3Þ

where q and v are the density and the velocity of the mass center
continuum, which are called the mass center density and the mass
center velocity, respectively (Sedov, 1997).

The diffusion flux and the mass fraction of component k are
defined as follows:

J kð Þ ¼ qðkÞ v kð Þ � v
� � ð2:1:4Þ

xðkÞ ¼ qðkÞ=q ð2:1:5Þ
where J kð Þ and xðkÞ are the flux and the mass fraction of component k,
respectively (Sedov, 1997).

With equations (2.1.2) and (2.1.3), summing (2.1.1) for all the k
components yields equation (2.1.6), which describes the density
change of the mass center continuum. Because all the components
satisfy the conditions for mass conservation, the mass center con-
tinuum is also mass-conserved. The chemical reactions are mass-
conserved, and hence are canceled by the summation, as shown
in equation (2.1.6):

@q
@t

þr � qvð Þ þ q r � v� ¼ 0 ð2:1:6Þ

Combining equations (2.1.6) and (2.1.1) yields equation (2.1.7)
with equation (2.1.8) below for the changing rate of the mass
fraction:

q _x kð Þ þ r � J kð Þ ¼
X
j

n jð Þ
kð ÞJ

jð Þ ð2:1:7Þ

_x kð Þ ¼
dx kð Þ
dt

ð2:1:8Þ

where � is the operator of rate, and d
dt is the total derivative operator

over time of a tensor’s components for fixed mass center coordi-
nates. In the selected reference space, the total derivatives for func-
tions of coordinate zi and time t are calculated by the equation
(2.1.9) below,

d
dt

¼ @

@t
þ v i @

@zi
ð2:1:9Þ
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where v i is the contravariant component of the mass center velocity
and zi is the contravariant coordinate of the selected reference
space.

The covariant component of the strain tensor for a continuum is
defined as half of the change in the covariant component of the
metric for the corresponding space (Sedov, 1997). Equation
(2.1.10) shows the strain of the mass center continuum:

êij ¼ 1
2

ĝij � g�
ij

� � ð2:1:10Þ

where êij is the covariant component of the strain tensor for the
mass center continuum. ^ indicates that the component corre-
sponds to the mass center space, ĝij is the covariant component of
the metric tensor of the deformed mass center space, and g�

ij is
the covariant component of the metric tensor for the initial mass
center space. Above metric-based definition of strain for the finite
deformation can be applied to the strains in different categories
(Sedov, 1997): elastic strain, thermal strain, plastic strain, concen-
tration strain, etc. As proved in Appendix A1, the strain tensor
defined by equation (2.1.10) is equivalent to the Green strain tensor.

The total strain may be composed of multiple strains with dif-
ferent categories, which can be elastic, plastic, creep, etc. For the
mass center continuum, within the mass center space, the covari-
ant component of the total strain is the summation of the covariant
components of the strains in all categories (Sedov, 1997), as shown
in equation (2.1.11):

êij ¼
X
l

êðlÞij ð2:1:11Þ

where êðlÞij is the component of the strain for the mass center space
with category l, and the category may be elastic, plastic, creep, etc.
Based on the metric-based definition of strain demonstrated by
equation (2.1.10), the additive decomposition of strain component
shown by equation (2.1.11) is valid for the finite deformation and
consistent with the multiplicative decomposition of deformation
gradient, which is proved in Appendix A1. Please note that only
the covariant components in Lagrangian coordinates satisfy the
additive decomposition of strain component (Sedov, 1997).

2.1.2. Momentum equation and energy equation
The Cauchy stress in a solution system represents the statistical

average of the atom interaction in the system (Thompson et al.,
2009). As the atoms of all the components are indistinguishable
on continuous scale, the Cauchy stress is related to the acceleration
of the mass center continuum using the momentum equation as
shown below (de Groot and Mazur, 2011);

qaL ¼ r � pþ
X
k

qðkÞF
L
kð Þ ð2:1:12Þ

where aL is the acceleration of the mass center continuum relative
to the lab space, p is the Cauchy’s stress tensor of the solution sys-
tem, and FL

kð Þ is the specific body force of component k in the lab
space.

In the reference space, aL is calculated using equation (2.1.13):

aLi ¼ @vLi

@t
þ vLkrkvLi ð2:1:13Þ

where aLi is the contravariant component of aL, vLi is the contravari-
ant component of vL, which is the velocity of the mass center con-
tinuum relative to the lab space, and rk is the operator of the
covariant derivative.

The evolution of the solution system obeys the 1st law of ther-
modynamics. The energy equation of the system is formulated
using the generalized D’Alembert principle below:
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d
Z
V
uqdV ¼

Z
V
dqqdV þ

Z
V

X
k

qðkÞF
L
kð Þ � drLkð ÞdV þ dWa

þ
Z
A
p � n � drLdA ð2:1:14Þ

where u is the specific internal energy of the mass center contin-
uum, V is the volume of the solution system, q is the specific heat
of the mass center continuum, drLðkÞ is the variational of the radius
vector for component k in the lab space, dWa is the total virtual
work of inertia force in the system, n is the normal vector for the
surface of the solution system, drL is the variational of the radius
vector for the mass center continuum in the lab space, and A is
the surface area of the solution system.

On the continuous scale, we use the mass center continuum to
represent the entire solution system. The mass center density and
the mass center velocity are considered as the density and the
velocity of the system, respectively. Hence, we use the mass center
continuum to calculate the virtual work of the inertia force in
equation (2.1.14), as shown below:

dWa ¼
Z
V
�qaL � drLdV ð2:1:15Þ
2.1.3. Equation of the entropy production rate
The evolution of a solution system satisfies the 2nd law of ther-

modynamics. Under nonequilibrium thermodynamics, the entropy
production rate is composed of a series of generalized thermody-
namic flows and forces that describe the system at non-
equilibrium (de Groot and Mazur, 2011). The derivation of the
entropy production rate is based on the description of the internal
energy. The solution system is represented by its mass center con-
tinuum, of which the total internal energy is a functional of the
specific internal energy, which is shown in equation (2.1.16):

U ¼
Z
m
u s; êðlÞij ; r̂kê

ðlÞ
ij ; xðkÞ; r̂ixðkÞ

� �
dm ð2:1:16Þ

where U is the total internal energy of the solution system, s is

specific entropy, r̂i is the operator of the covariant derivative in
the mass center space, and m is the mass of the solution system.

The intensive thermodynamic functions of the solution system
are defined as the functional derivatives of the total internal
energy. With the mathematical relation between the functional
derivatives and the partial derivatives, we define the homogeneous
functions and inhomogeneous functions as shown below:

Temperature T is defined as follows:

T ¼ dU
ds

� �
e;x

¼ @u
@s

� �
e;re;x;rx

ð2:1:17Þ

Stress with category l, rðlÞ, is defined as follows:

1
q
r̂ðlÞij ¼ dU

dêðlÞij

 !
s;eðl0–lÞ ;x

¼ 1
q
r̂ðlÞij

HOM � r̂k
1
q
r̂ðlÞijk

INH ð2:1:18Þ

With category l, the homogeneous stress rðlÞ
HOM and the inhomo-

geneous stress rðlÞ
INH are defined below, respectively:

1
q
r̂ðlÞij

HOM ¼ @u

@êðlÞij

 !
s;eðl0–lÞ ;re;x;rx

ð2:1:19Þ

1
q
r̂ðlÞijk

INH ¼ @u

@r̂kê
ðlÞ
ij

 !
s;e;reðl0–lÞ ;x;rx

ð2:1:20Þ

The category l can be elastic, plastic, creep, etc. The chemical
potential of component k relative to component K is defined by
127
lðkKÞ ¼
dU
dxðkÞ

� �
s;e;xðk0–kÞ

¼ lHOMðkKÞ � r̂il̂
i
INHðkKÞ ð2:1:21Þ

where the homogeneous relative chemical potential lHOMðkKÞ and
inhomogeneous relative chemical potential lINHðkKÞ are respectively

defined by:

lHOMðkKÞ ¼
@u
@xðkÞ

� �
s;e;re;xðk0–kÞ ;rx

ð2:1:22Þ

l
^ i

INHðkKÞ ¼
@u

@r
^

ixðkÞ

0
B@

1
CA

s;e;re;x;rxðk0–kÞ

ð2:1:23Þ

Based on the definitions of the intensive functions above, we
find equations (2.1.24), (2.1.25), (2.1.26), (2.1.27), and (2.1.28) for
the entropy production rate by combining the conservation equa-
tion (2.1.7), the energy equation (2.1.14), and the divergence theo-
rem. The derivation steps are shown in Appendix A3. With
equation (2.1.24), we have the generalized thermodynamic flows

Js, sðlÞ, JðkÞ, and JðjÞ, and generalized thermodynamic forces rT , _eðlÞ,

rWL
ðkKÞ, and AðjÞ

C (de Groot and Mazur, 2011). The generalized ther-
modynamic flows can be expressed as functions of the generalized
thermodynamic forces. Their models for a simplified case are
shown in Section 2.2.2.

Th ¼ �Js � rT þ
X
l

sðlÞ : _eðlÞ �
XK�1

k

JðkÞ � rWL
ðkKÞ þ

X
j

JðjÞAðjÞ
C ð2:1:24Þ

sðlÞ ¼ p� rðlÞ ð2:1:25Þ

WL
ðkKÞ ¼ lðkKÞ þuL

ðkKÞ ð2:1:26Þ

FL
ðkKÞ ¼ FL

ðkÞ � FL
ðKÞ ¼ �ruL

ðkKÞ ð2:1:27Þ

AðjÞ
C ¼ �

XK�1

k

lðkKÞn
ðjÞ
ðkÞ ð2:1:28Þ

where h is entropy production rate, Js is entropy flux, sðlÞ is the dis-

sipation stress with category l, _eðlÞ is the strain rate with category l
of the mass center continuum, JðkÞ is the diffusion flux of component

k, WL
ðkKÞ is the potential energy of component k relative to compo-

nent K in the lab space, AðjÞ
C is the specific chemical affinity of reac-

tion j, and uL
ðkKÞ is the potential energy corresponding to the body

force in the lab space.

2.1.4. Constitutive relations of state functions
We selected T, eðlÞ;reðlÞ; xðkÞ, and rxðkÞ as the basic independent

parameters to determine the status of a solution system. The other
state functions of the solution system depend on these five param-
eters. To replace the specific entropy with the temperature as an
independent parameter of the state functions in Section 2.1.3,
specific free energy aF is introduced by equations (2.1.29) and
(2.1.30):

aF ¼ u� Ts ð2:1:29Þ
and

daF ¼ �sdT þ
X
l

1
q
r̂ðlÞij

HOMdê
ðlÞ
ij þ

X
l

1
q
r̂ðlÞijk

INH dr̂kê
ðlÞ
ij

þ
XK�1

k

lHOMðkKÞdxðkÞ þ
XK�1

k

l̂i
INHðkKÞdr̂ixðkÞ ð2:1:30Þ
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We assume that the 2nd order partial derivatives of aF is contin-
uous. The homogeneous and inhomogeneous stresses are therefore
a continuous function of T, eðlÞ;reðlÞ; xðkÞ, and rxðkÞ. It is assumed
that there is no crossed coupling between different categories of

the (in)homogeneous stresses, i.e.,
@ r̂ðlÞij

HOM
=q

� �
@êðhÞ

kl

� �
l–h

¼ 0,

@ r̂ðlÞij
HOM

=q
� �
@r̂m ê

ðhÞ
pq

� �
l–h

¼ 0,
@ r̂ðlÞijk

INH =q
� �

@êðhÞpq

� �
l–h

¼ 0, and
@ r̂ðlÞijk

INH =q
� �
@r̂m ê

ðhÞ
pq

� �
l–h

¼ 0. The

homogeneous and inhomogeneous stresses with category l satisfy
equations (2.1.31) and (2.1.32):

d
r̂ðlÞij

HOM

q

 !
¼ Ĉ

ðlÞijkl
q dêðlÞkl þ Ĉ

ðlÞijrsp
qr dr̂pê

ðlÞ
rs þ

XK�1

k

ĵðlÞij
ðkKÞdxðkÞ

þ
XK�1

k

ĵðlÞijq
rðkKÞdr̂qxðkÞ þ ĉðlÞijdT ð2:1:31Þ

and

d
r̂ðlÞijk

INH

q

 !
¼ K̂

ðlÞijklm
dêðlÞlm þ K̂

ðlÞijklmp

r dr̂pê
ðlÞ
lm þ

XK�1

k

x̂ðlÞijk
ðkKÞdxðkÞ

þ
XK�1

k

x̂ðlÞijkq
rðkKÞdr̂qxðkÞ þ v̂ðlÞijkdT ð2:1:32Þ

where Ĉ
ðlÞijkl
q , Ĉ

ðlÞijrsp
qr , ĵðlÞij

ðkKÞ, ĵ
ðlÞijq
rðkKÞ, ĉ

ðlÞij, K̂
ðlÞijklm

, K̂
ðlÞijklmp

r , x̂ðlÞijk
ðkKÞ , x̂

ðlÞijkq
rðkKÞ,

and v̂ðlÞijk are the components of the coefficient tensors.
Similarly, the relative chemical potentials are continuous func-

tions of T, eðlÞ; reðlÞ; xðkÞ, and rxðkÞ. They satisfy equations (2.1.33)
and (2.1.34):

dlHOMðkKÞ ¼ � @s
@xðkÞ

� �
T;:::

dT þ
X
l

ĵðlÞij
ðkKÞdê

ðlÞ
ij

þ
X
l

x̂ðlÞijk
ðkKÞdr̂kê

ðlÞ
ij þ

XK�1

h

NðkhÞdxðhÞ

þ
XK�1

h

l̂
i

ðkKhÞdr̂ixðhÞ ð2:1:33Þ

and

dl̂i
INHðkKÞ ¼ � @s

@r̂ixðkÞ

 !
T;:::

dT þ
X
l

ĵðlÞrsi
rðkKÞdê

ðlÞ
rs

þ
X
l

x̂ðlÞrspi
rðkKÞdr̂pê

ðlÞ
rs

þ
XK�1

h¼1

l̂
i

ðkKhÞdxðhÞ þ
@2aF

@r̂ixðkÞ@r̂qxðhÞ
dr̂qxðhÞ

" #
ð2:1:34Þ

where NðkhÞ and l̂
i

ðkKhÞ are the components of coefficient tensors.
Because of the symmetry of the 2nd order derivatives of aF ,

coefficients ĵðlÞij
ðkKÞ, x̂

ðlÞijk
ðkKÞ , ĵ

ðlÞrsi
rðkKÞ, and x̂ðlÞrspi

rðkKÞ appear in both expres-

sions of rðlÞ and lðkKÞ. The coefficients ĵðlÞij
ðkKÞ, x̂

ðlÞijk
ðkKÞ , ĵ

ðlÞrsi
rðkKÞ, and

x̂ðlÞrspi
rðkKÞ are named coupling coefficients of the mechanical-

chemical coupling effect.

2.2. Simplification and application

The general theory in Section 2.1 may be applied to a simplified
solution system that represents the tin anode particle in Li-ion bat-
teries, based on the assumptions below: (1) This solution system is
a binary system with isotropic materials. (2) The temperature of
the system is constant and evenly distributed. (3) The body force
is neglected. (4) The materials of the system have no memory
128
effect. (5) Only the interstitial diffusion of Li in the Sn anode is con-
sidered. (6) The electrochemical reaction of the Sn anode occurs
only on the surface of the solution system. (7) The electrical poten-
tial is evenly distributed on the particle.

In the tin anode, Li atoms diffuse through the sites around Sn
atoms. The solution system has two components, Li and Sn. We
define three continuums: the Li continuum, Sn continuum and
the mass center continuum. All three continuums have their corre-
sponding deformed spaces. Li is defined as component 1 and Sn is
defined as component 2. If there is no index of components marked
in a function, that function is for the mass center continuum.

2.2.1. Mass conservation and kinematics
The boundary of the anode is determined by the boundary of

the Sn continuum. For the convenience of setting the boundary
conditions, we select the space of the Sn (component 2) as the ref-
erence space, of which the independent variables for the functions
are z1; z2; z3; t

� �
, where zi is the Eulerian coordinate of the mass

center continuum and the Lagrangian coordinate of the Sn
continuum.

Selecting the Sn space as the reference space means that
v ð2Þ ¼ 0. The solution system is assumed to be a binary system.
This system yields a simplified form of equation (2.1.4), as shown
in equation (2.2.1) below,

Jð1Þ ¼ qð2Þv ð2:2:1Þ
Substituting equation (2.2.1) into equation (2.1.7), with the

assumption that there is no chemical reaction inside the system,
yields the mass conservation equation:

q _x 1ð Þ þ r � qð2Þv
� �

¼ 0 ð2:2:2Þ

For the binary system, the molar fraction and the mass fraction
are related by equation (2.2.3):

y0ð1Þ ¼
Mð2Þ

NBMð1Þ

xð1Þ
xð2Þ

ð2:2:3Þ

where y0ð1Þ is the molar fraction of the occupied Li sites, Mð1Þ is the
molar mass of Li, Mð2Þ is the molar mass of Sn, and NB is the average
number of Li per Sn when the anode is fully lithiated.

We define the current density of lithiation as positive. The total
current of the anode particle is as follows:

I ¼ �F
Z
A

1
Mð1Þ

qv � ndA ð2:2:4Þ

where n is the normal vector of the surface.
Since only the interstitial diffusion is considered, we assume

that the elastic strain and plastic strain rate of the anode particle
are contributed from the Sn atoms, as shown in equations (2.2.5)
and (2.2.6):

eðeÞ ¼ eðeÞð2Þ ð2:2:5Þ
and

_eðpÞ ¼ _eðpÞð2Þ ð2:2:6Þ

where eðeÞ is the elastic strain of the mass center continuum, eðeÞð2Þ is

the elastic strain of the Sn continuum, _eðpÞ is the plastic strain rate of

the mass center continuum, and _eðpÞð2Þ is the plastic strain rate of the
Sn continuum. In addition, we assume that the Sn continuum has
only the elastic deformation and the plastic deformation. Since
the reference space is the Lagrangian space of the Sn continuum,
the additive decomposition of strain component demonstrated by
equation (2.1.11) yields three kinematic relations for the Sn contin-
uum, as shown in equations (2.2.7), (2.2.8), and (2.2.9):
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eð2Þij ¼ eðeÞð2Þij þ eðpÞð2Þij ð2:2:7Þ

_eð2Þij ¼ 1
2

rivL
ð2Þj þrjvL

ð2Þi
� �

¼ @eð2Þij
@t

¼ 1
2
@gð2Þij
@t

ð2:2:8Þ

_eðpÞð2Þij ¼
@eðpÞð2Þij
@t

ð2:2:9Þ

where eð2Þij is the covariant component for the total strain of the Sn

continuum, eðeÞð2Þij is the covariant component for the elastic strain of

the Sn continuum, eðpÞð2Þij is the covariant component for the plastic

strain of the Sn continuum, _eð2Þij is the covariant component for
the total strain rate of the Sn continuum, vL

ð2Þj is the covariant com-
ponent for the velocity of the Sn continuum relative to the lab

space, gð2Þij is the metric of the Sn space, and _eðpÞð2Þij is the covariant
component for the plastic strain rate of the Sn continuum. By sub-
stituting equations (2.2.5), (2.2.6), and (2.2.7) into equation (2.2.8),
we have the relations between the deformation of the mass center
continuum and the deformation of the Sn continuum as shown
below,

@eðeÞij

@t
þ _eðpÞij ¼ 1

2
rivL

ð2Þj þrjvL
ð2Þi

� �
ð2:2:10Þ

and

@eðeÞij

@t
þ _eðpÞij ¼ 1

2
@gð2Þij
@t

ð2:2:11Þ

The constitutive equations for the finite deformation should be
formulated based on rate functions. For the mass center contin-
uum, the elastic strain rate is connected to its elastic strain by
equation (2.2.12) (Sedov, 1997):

_eðeÞij ¼ @eðeÞij

@t
þ eðeÞkj

@vk

@zi
þ eðeÞil

@v l

@zj
þ vk

@eðeÞij

@zk
ð2:2:12Þ

where _eðeÞij is the covariant component for the elastic strain rate of

the mass center continuum and v i is the contravariant component
of the mass center velocity. The total strain rate of the mass center
continuum depends on the mass center velocity relative to the lab
space, which is equal to the mass center velocity relative to the ref-
erence space plus the velocity of the reference space relative to the
lab space. It yields equation (2.2.13):

_e ¼ 1
2

rv þ rvð ÞT
h i

þ 1
2

rvL
ð2Þ þ rvL

ð2Þ
� �T� 	

ð2:2:13Þ

where the first part 1
2 rv þ rvð ÞT
h i

is the mass center strain rate

induced by diffusion, called diffusion-induced creep rate, and the
second part is the mass center strain rate induced by the Sn
continuum.

2.2.2. Dissipation models of non-equilibrium process
Equation (2.1.24) for the entropy production rate reveals 4 parts

for the dissipation of the solution system: thermal, mechanical, dif-
fusional, and chemical reactions. For the system with an evenly
distributed temperature, thermal dissipation is canceled. The other
three dissipations are modeled in this section.

Because there is no memory effect, rðpÞ ¼ 0. The elastic stress is
marked as r. It yields as follows:

sðpÞ ¼ p ¼ sðeÞ þ r ð2:2:14Þ
The mechanical dissipation is assumed to be related to _eðpÞ and

_eðeÞ. Substituting equation (2.2.14) into equation (2.1.24) yields as
follows:
129
ThM ¼ r : _eðpÞ þ sðeÞ : _eðeÞ þ _eðpÞ
� �

ð2:2:15Þ

where hM is the mechanical entropy production rate. For the term

r : _eðpÞ, we describe the plastic strain rate with the classic form of
the plasticity flow as follows:

_eðpÞ ¼ 2kðPÞSðeÞ ð2:2:16Þ
where kðPÞ is the coefficient of the plastic strain rate, which is called

the plasticity rate in this paper, and SðeÞ is the deviatoric tensor of r.
Substituting equation (2.2.16) into equation (2.2.15) yields as

follows:

ThM ¼ 2kðPÞwþ sðeÞ : _eðeÞ þ _eðpÞ
� �

ð2:2:17Þ

with

w ¼ r : SðeÞ ¼ SðeÞ : SðeÞ ð2:2:18Þ
Equation (2.2.17) reveals that w may be considered as a gener-

alized force of the generalized flow kðPÞ. The function kðPÞ ¼ kðPÞ wð Þ is
modeled by introducing the transition-state theory into the plas-
ticity. Atoms should pass the transition state for causing plastic
deformation. This mechanism is named kinetic plasticity and is
shown below:

kðPÞ ¼ kðPÞþ � kðPÞ� ð2:2:19Þ

kðPÞ� ¼ CðpÞ�exp � EðpÞ�
A

RT

 !
ð2:2:20Þ

EðpÞþ
A ¼ aðpÞKwwþ EðpÞ

A0 ð2:2:21Þ

EðpÞ�
A ¼ aðpÞ þ 1

� �
Kwwþ EðpÞ

A0 ð2:2:22Þ

where kðPÞ� is forward/backward plasticity rate, CðpÞ� are pre-
exponential factors of the forward/backward plasticity rate, aðpÞ is
a symmetry coefficient of the plasticity rate, Kw is the stress-

activation energy coefficient, and EðpÞ
A0 is the reference activation

energy of the plasticity rate.
During the plastic deformation, when some atoms are passing

the transition state from the old state to the new one, that event
corresponds to the forward plasticity rate. Additionally, some
atoms may go back to the old state from the new one. This event
corresponds to the backward plasticity rate. The net plasticity rate
is the difference between the forward plasticity rate and the back-
ward plasticity rate. The probability of passing the transition state
obeys the Boltzmann distribution with forward/backward activa-
tion energy. The forward/backward activation energy is assumed
to be linear with the w.

The dissipation stress sðeÞ in equation (2.2.17) is known as vis-
cous stress. We assume it as follows:

sðeÞ ¼ gðeÞ : _eðeÞ þ gðpÞ : _eðpÞ ð2:2:23Þ
where gðeÞ and gðpÞ are the coefficients of viscosity related to elastic
strain rate and plastic strain rate respectively. The existence of vis-
cosities makes the non-equilibrium process stable. Solving the
equations of the system may give divergent results if the coeffi-
cients of the viscosity are not carefully chosen.

The material is assumed to be isotropic. Hence, gðeÞ and gðpÞ have
simplified forms related to the metric as follows:

gðeÞijkl ¼ gðeÞ
H gij

ð2Þg
kl
ð2Þ þ gðeÞ

D gik
ð2Þg

jl
ð2Þ þ gðeÞ

D gil
ð2Þg

jk
ð2Þ ð2:2:24Þ

and

gðpÞijkl ¼ gðpÞ
H gij

ð2Þg
kl
ð2Þ þ gðpÞ

D gik
ð2Þg

jl
ð2Þ þ gðpÞ

D gil
ð2Þg

jk
ð2Þ ð2:2:25Þ
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where gij
ð2Þ is the contravariant component of the metric tensor for

the reference space, and gðeÞ
H , gðeÞ

D , gðpÞ
H , and gðpÞ

D are material
parameters.

Substituting equation (2.2.16) into equation (2.2.23) yields a

simplified form of sðeÞ by cancelling the gðpÞ
H :

sðeÞ ¼ gðeÞ : _eðeÞ þ 4gðpÞ
D kðPÞSðeÞ ð2:2:26Þ

For isotropic materials, the parameters are zero for the 1st and
the 3rd order coefficient tensors (Sedov, 1997). Hence, for the dif-
fusional dissipation, there should be no coupling between Jð1Þand

AðjÞ
C , or between Jð1Þ and _eðlÞ. The body force is neglected. It yields

as follows:

Thð1Þ ¼ �Jð1Þ � rlð12Þ ð2:2:27Þ
where hð1Þ is the diffusional entropy production rate of the simpli-
fied system. The relation between Jð1Þ and rlð12Þ is expressed as
follow:

Jið1Þ ¼ � L
T
gij
ð2Þrjlð12Þ ð2:2:28Þ

with

L ¼ L0f L xð1Þ
� � ð2:2:29Þ

where Jið1Þ is the contravariant component of Li flux, L is the thermo-
dynamic coefficient of diffusion, and L0 is the reference thermody-
namic coefficient of diffusion. Coefficient L depends on the mass
fraction of Li. According to equations (2.1.4) and (2.1.5), Jð1Þ is zero
when xð1Þ is zero. Hence, L should be zero whenxð1Þ is zero. More-
over, we assume that L is zero when the anode is fully lithiated.

We set lithiation as the forward reaction. The chemical reaction
on the surface is as follows:

Liþ þ e� $ Li ð2:2:30Þ
where Li+ is the Li-ion from the electrolyte and e� is the electron
from the anode. The surface region may not be considered as the
binary system since there are more than two components on the
surface. We define the Li-ion as component 3.

The molar electrochemical potential of the Li-ion in the elec-
trolyte is expressed as follows:

lð30ÞM ¼ lð32ÞMð1Þ þ F/ ð2:2:31Þ
where lð30ÞM is the molar electrochemical potential of the Li-ion in
the electrolyte, F is the Faraday’s constant, and / is the electrical
potential based on the location of Li-ion. If the diffusivity of the
Li-ion in the electrolyte is much higher than the diffusivity of Li
in the anode, we may consider the electrolyte to always be in equi-
librium relative to the anode. Hence, lð30ÞM should be constant and
evenly distributed in the electrolyte. Substituting equation (2.2.31)
into equation (2.1.28) yields as follows:

ACM ¼ lð30ÞM � F/þ lð12ÞMð1Þ
� �

ð2:2:32Þ

where ACM is the molar chemical affinity.
We define the molar reaction rate JM with JM ¼ J=Mð1Þ. Based on

the transition-state theory, the function JM ¼ JM ACMð Þ is modeled by
equations (2.2.33), (2.2.34), (2.2.35), and (2.2.36):

JM ¼ JþM � J�M ð2:2:33Þ

J�M ¼ CðRÞ�exp �EðRÞ�
A

RT

 !
ð2:2:34Þ

EðRÞþ
A ¼ aðRÞACM þ EðRÞ

A0 ð2:2:35Þ
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EðRÞ�
A ¼ aðRÞ þ 1

� �
ACM þ EðRÞ

A0 ð2:2:36Þ

where J�M is the forward/backward molar reaction rate, CðRÞ� is pre-
exponential factors of the forward/backward molar reaction rate,

aðRÞ is the symmetry coefficient of the molar reaction rate, and EðRÞ
A0

is the reference activation energy of the molar reaction rate.

2.2.3. Models of state functions

For isotropic materials, Ĉ
ijkl

q and ĵðlÞij
ðkKÞ have simplified forms

related to the metric tensor. It yields as follows:

Ĉ
ijkl

q ¼ kqĝ
ijĝkl þ Gqĝ

ikĝjl þ Gqĝ
ilĝjk ð2:2:37Þ

and

ĵij
ð12Þ ¼ jĝij ð2:2:38Þ

where j is related to the expansion ratio defined by

aij ¼ aĝij ¼
@êðeÞ

ij

@xð1Þ

� �
rHOM

q

. The chain rule

@
@xð1Þ

r̂ij
HOM
q

� �
êðeÞ
kl

¼ � @

@êðeÞ
kl

r̂ij
HOM
q

� �
xð1Þ

@êðeÞ
kl

@xð1Þ

� �
rHOM

q

yields the connection

between j and a:

j ¼ �ð3kq þ 2GqÞa ð2:2:39Þ
where a is related to the partial molar volume VPM by

a ¼ 1
3

qVPM

Mð1Þxð2Þ
ð2:2:40Þ

Since for isotropic materials, the parameters are zero for the 3rd
and 5th order coefficient tensors (Sedov, 1997), we can cancel the

Ĉ
ðlÞijrsp
qr , ĵðlÞijq

rðkKÞ, K̂
ðlÞijklm

, x̂ðlÞijk
ðkKÞ , and v̂ðlÞijk in equations (2.1.31) and

(2.1.32). There are 15 independent components for 6th order iso-
tropic tensors (Kearsley and Fong, 1975). With considering the
symmetries of stress tensor and strain tensor, the number of the

independent components for Kr decreases to six: Krð1Þĝ
ijĝkpĝlm,

Krð2Þĝ
ijĝklĝmp, Krð3Þĝ

ikĝjlĝmp, Krð4Þĝ
ikĝjpĝlm, Krð5Þĝ

ilĝjmĝkp, and

Krð6Þĝ
ilĝjpĝkm. For simplicity, K̂

ijklmp

r and x̂ijkq
rð12Þ are expressed in only

one component of them. Hence, we assume

K̂
ijklmp

r ¼ Krĝ
ijĝkpĝlm ð2:2:41Þ

x̂ijkq
rð12Þ ¼ xI ĝ

ijĝkq ð2:2:42Þ
By substituting equations (2.2.41) and (2.2.42) into equations

(2.1.31) and (2.1.32), equation (2.1.18) yields the model of the
objective elastic stress rate _X as shown below,

_X
ij ¼ Cijkl

q q _eðeÞkl � rij _emm þ jgij
ð2Þq _xð1Þ þ 2q r2f ex

� �
_eij � qgij

ð2Þ

�
d r2f ex
� �

dt
ð2:2:43Þ

with

f ex ¼ Kre eð Þm
m þxIxð1Þ ð2:2:44Þ

The relation between the objective elastic stress rate and the
elastic stress is as follows (Sedov, 1997):

_X
ij ¼ @rij

@t
� rpj @v i

@zp
� riq @v j

@zq
þ vk @rij

@zk
ð2:2:45Þ

The relative chemical potential lð12Þ is divided into an ideal part
and an excess part. The entropy of the ideal part obeys the ideal
solution model (DeHoff, 2006). We assume that specific entropy s
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is independent of rxð1Þ and reðlÞ. Hence, combining equations
(2.1.21), (2.1.29), (2.1.30), (2.1.31), (2.1.33), and (2.1.34) yields
the relative chemical potential model below. The derivation steps
are shown in Appendix A4.

@lEXð12Þ
@t

þ vk
@lEXð12Þ
@zk

¼ KDe
_ ðeÞm

m þ hx
_

ð1Þ ð2:2:46Þ

lð12Þ ¼ RT
1

Mð1Þ
ln

y0ð1Þ
y0ð2Þ

� NB

Mð2Þ
lny0ð2Þ

" #
�xIr2e eð Þm

m

� Kð12Þr2xð1Þ þ lEXð12Þ ð2:2:47Þ

KD ¼ j� T
xð2Þ

c ð2:2:48Þ

c ¼ �ð3kq þ 2GqÞaT ð2:2:49Þ
where lEXð12Þ is the excess relative chemical potential, h is the mate-
rial parameter of the relative chemical potential, calculated by
h ¼ khRTRT=Mð2Þ, R is gas constant, y0ð2Þ is the molar fraction of unoc-
cupied Li sites, Kð12Þ is the material parameter of the relative chem-
ical potential, and aT is the thermal expansion ratio.

2.3. Numerical simulation

2.3.1. Transformation of equations and numerical method
For the convenience of simulating Sn anode particles, we trans-

form the following equations into conducive forms for lineariza-
tion: equation (2.2.2) for mass conservation, the momentum
equation (2.1.12), the diffusion equation (2.2.28), equation
(2.2.20) for the plasticity rate, equation (2.2.34) for the chemical
reaction rate, and equation (2.2.47) for the relative chemical poten-
tial. The derivation steps of the transformation are shown in
Appendix A5. The transformed equations are shown below:

The equation for mass conservation is transformed into:

q _xð1Þ � L0R
Mð1Þ

f L1r2xð1Þ þ gij
ð2Þ rif L1ð Þ rjxð1Þ

� �h i

� L0
T

f Lr2lIEð12Þ þ gij
ð2Þ rif Lð Þ rjlIEð12Þ

� �h i
¼ 0 ð2:3:1Þ

f L xð1Þ
� � ¼ AL xð1Þ

� �N1 1� xð1Þ
� �N2 1� Mð2Þ

NBMð1Þ
þ 1

� �
xð1Þ

� 	N3

ð2:3:2Þ

f L1 xð1Þ
� � ¼ AL xð1Þ

� �N1�1 1� xð1Þ
� �N2�1 1� Mð2Þ

NBMð1Þ
þ 1

� �
xð1Þ

� 	N3�1

ð2:3:3Þ
where lIEð12Þ is inhomogeneous and an excess part of the relative
chemical potential and AL, N1, N2, N3 are material parameters
related to f L.

The momentum equation is transformed into:

rjpij ¼ q
@v i

@t
þ vkrkv i þ @vL

ð2Þjg
ij
ð2Þ

@t
þ vL

ð2ÞjrkvL
ð2Þmg

kj
ð2Þg

mi
ð2Þ

 !
ð2:3:4Þ

pij ¼ rij þ gHg
ij
ð2Þg

kl
ð2Þ þ 2gDg

ik
ð2Þg

jl
ð2Þ

� �
_eðeÞkl þ 4gðpÞ

D kðPÞSðeÞij ð2:3:5Þ

The diffusion equation is transformed into:

qð2Þv i ¼ �L0g
ij
ð2Þ

R
Mð1Þ

f L1rjxð1Þ þ f L
T
rjlIEð12Þ

� 	
ð2:3:6Þ

The equation for the plasticity rate is transformed into:
131
@kðPÞþ

@t
¼ � aðpÞKw

RT
kðPÞþ

@w
@t

ð2:3:7Þ

@kðPÞ�

@t
¼ � aðpÞ þ 1

� �
Kw

RT
kðPÞ�

@w
@t

ð2:3:8Þ

@w
@t

¼ 2 SðeÞij

@rij

@t
þ SðeÞijruv @gð2Þui

@t
gð2Þvj

� �
ð2:3:9Þ

The equation for the chemical reaction rate is transformed into:

@JþM
@t

¼ � aðRÞ

RT
JþM

@ACM

@t
ð2:3:10Þ

@J�M
@t

¼ � aðRÞ þ 1
RT

J�M
@ACM

@t
ð2:3:11Þ

@ACM

@t
¼ � F

@/
@t

þMð1Þ
@lHLð12Þ
@xð1Þ

@xð1Þ
@t

þ @lIEð12Þ
@t

� �� 	
ð2:3:12Þ

@lHLð12Þ
@xð1Þ

¼ RTNB

Mð2Þ

k
xð1Þ

� 1
xð2Þ

þ kþ 1ð Þ2
1� kþ 1ð Þxð1Þ

" #
ð2:3:13Þ

k ¼ Mð2Þ
NBMð1Þ

ð2:3:14Þ

where lHLð12Þ is the homogeneous-logarithm relative chemical
potential.

The equation for the relative chemical potential is transformed
into:

lIEð12Þ ¼ �xIr2e eð Þm
m � Kð12Þr2xð1Þ þ lEXð12Þ ð2:3:15Þ

For the numerical simulations, we have equations (2.2.43),
(2.2.39), (2.2.40), (2.2.44), (2.3.4), (2.3.5), (2.2.13), (2.2.19),
(2.3.7), (2.3.8), (2.3.9), (2.2.10), (2.3.1), (2.3.2), (2.3.3), (2.1.8),
(2.2.45), (2.2.12), (2.3.6), (2.2.46), (2.2.48), (2.3.15), (2.2.11), and
(2.1.5). To make the number of variables equal to the number of
equations, the four additional equations shown below are
necessary:

@q 2ð Þ
@t

þ q 2ð Þr � v ðLÞ
ð2Þ ¼ 0 ð2:3:16Þ

gð2Þij
h i

¼ gij
ð2Þ

h i�1
ð2:3:17Þ

kq ¼ k=q ð2:3:18Þ

Gq ¼ G=q ð2:3:19Þ
where k and G are Lame constants.

We have 28 equations above with 28 variables below to numer-
ically solve the non-equilibrium process of the Sn anode particle,

namely, _X, j, a, f ex, vL
ð2Þ, p, _e, k

ðPÞ, kðPÞþ, kðPÞ�, w, _eðeÞ, _xð1Þ, f L, f L1, x 1ð Þ,

r, eðeÞ, v , lEXð12Þ, KD, lIEð12Þ, gð2Þij, q, q 2ð Þ, g
ij
ð2Þ, kq, and Gq.

We apply the finite difference method coded with MATLAB to
solve the equation set of the solution system numerically. We
use a mesh generator program from Persson and Strang (2004) to
generate the grid of the discretized anode particle. The derivative
matrices of the finite difference are built based on the method from
Perrone and Kao (1975). We use the implicit method of finite dif-
ference scheme to keep the system numerically stable and conver-
gent. System equations are solved in every time step. The
equations of the solution system are nonlinear. To reduce the com-
putational cost, Newton’s iteration is avoided at every time step.
The equations are simply linearized by setting the variables as
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input coefficients for every time step if the variables are integrated
over time in the simulation.

2.3.2. Geometry and material parameters of the particle
Fig. 1a shows the initial spherical cap geometry of the anode

particle bonded on a flat current collector, based on the size of
the Sn particle observed in Takeuchi (2016). To prevent stress con-
centration, the fillet is set on the connection between the current
collector and the particle. We use the cylindrical coordinate frame
z1; z2; z3
� �

on the initial Sn space, where z2 is the angle coordinate.
The origin of the coordinate frame coincides with the spherical
center of the spherical cap.

For simplicity, the numerical simulation of phase separation
and the inhomogeneous stress are neglected in this paper. Hence
we set Kr ¼ 0, xI ¼ 0, Kð12Þ ¼ 0. Other material parameters used

for the computation are shown in Table 1. gðeÞ
H , gðeÞ

D and gðpÞ
D are

assigned by referring the viscosity of glass at transition state
(Zheng and Mauro, 2017). Because the stiffness of electrodes may
change during charging/discharging (Maxisch and Ceder, 2006;
Stournara et al., 2012; Shenoy et al., 2010), the Lame constants
are multiplied by factors k ¼ kkGk0 and G ¼ kkGG0, where k0 and
G0 are Lame constants of pure Sn (Qi et al., 2014). The partial molar

volume VPM is determined by VPM ¼ Mð2ÞRV
q0NB

, where RV is the ratio of

the expanded volume of the anode particle after it is fully lithiated
by the ideal process that is stress-free and possesses quasi-
equilibrium, and q0 is the density of pure Sn. To save on the com-
putation cost, we set RV ¼ 1 which is half of the ratio of a real Sn
anode (Qi et al., 2014).

The thermodynamic coefficient of diffusion L in equation
(2.2.28) can be connected to the diffusivity D in Fick’s law. With
the values of N1, N2, and N3 in Table 1, equation (2.2.29) and equa-
tion (2.3.2) yield the curve of L. Comparing equation (2.2.28) with
Fick’s 1st law yields the corresponding D of L as shown in Fig. 1b.
The derivation steps are shown in Appendix A6. The shape of D
is basically consistent with the results in Ding (2009). The value
of D agrees the range between 8� 10�20 m2/s and 5:9� 10�11

m2/s mentioned in Shi et al. (2016).

2.3.3. Boundary conditions, initial conditions and deformation
Due to the symmetry, we calculate the right half of the particle.

In Fig. 1a, the segment from point A to point C is designated the
bottom, and the segment from point C to point B is called an arc.

The mechanical boundary condition is

kðiÞBAMp
ijnj þ gBA 1� kðiÞBAM

� �
vL

ð2Þjg
ij
ð2Þ ¼ 0 ð2:3:20Þ
Fig. 1. (a) A representative Sn anode particle used in the simulation. Initially, the particle
the fillet between points C and D is 0.375 mm. The distance between the spherical center a
of diffusion L and the diffusivity D serve as functions of the molar fraction of occupied L
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with

kðiÞBAM ¼ 2
p
arctan lð ÞaðiÞ 1� lð ÞbðiÞ

h i�cðiÞn o
ð2:3:21Þ

where kðiÞBAM is the bottom-arc mixing coefficient for the mechanical

boundary condition. kðiÞBAM helps to prevent singularity by making the
mechanical boundary condition change continuously from the bot-

tom to the arc. kðiÞBAM is a monotone-increasing function of l with
value settings of aðiÞ, bðiÞ and cðiÞ. l represents the location along
the boundary passing through points A, C, D, and B in Fig. 1a. l = 0
at point A and l = 1 at point B. For both i = 1 and i = 3, we set

kðiÞBAM ¼ 0:1 at point C, kðiÞBAM ¼ 0:9 at point D, and kðiÞBAM ¼ 0:5 at the
midpoint of the boundary segment between points C point D in
Fig. 1a.

The kinetic boundary condition is composed of the following
equations: equation (2.1.7) for mass conservation, equations
(2.2.33), (2.3.10), (2.3.11), (2.3.12), and (2.3.13) for chemical reac-
tion, and equation (2.2.4) for the total electric current. The reaction
region is very thin compared to the whole particle. The mass con-
servation equation can be simplified as

qv � n ¼ �JMMð1ÞhR ð2:3:22Þ

where hR is the thickness of the reaction region. In Table 1, hR is
assigned by referring the thickness of electrical double layer
(Marcicki et al., 2014).

Ideally, the chemical affinity on the segment will be zero where
the particle contacts the current collector; i.e., only the surface
where the particle contacts the electrolyte has the chemical reac-
tion. Like the mechanical boundary condition, to avoid singularity,
we set the kinetic boundary condition changes continuously along
the surface. A coefficient kBAk with the same mathematical form as
equation (2.3.21) is multiplied on the right side of equation
(2.3.12).

The surface area of the particle changes during (de)lithiation.
Based on the particle symmetry with respect to z2, the dA of the
integral in equation (2.2.4) changes according to equation
(2.3.23) as shown below:

dA
dA0

� �2

¼ gð2Þ11 � 2gð2Þ13 z1=z3
� �þ gð2Þ33 z1=z3

� �2
1þ z1=z3ð Þ2

gð2Þ22

z1ð Þ2
" #

ð2:3:23Þ

The derivation steps are shown in Appendix A7. With the
kinetic boundary condition, JM , J

þ
M , J

�
M , ACM , lHLð12Þ, and / are added

into the equation set for the anode particle in the galvanostatic
mode of lithiation.
is a spherical cap with a fillet. The radius of the spherical cap is 1.5 mm. The radius of
nd the current collector is 0.75 mm. (b) The curves of the thermodynamic coefficient
i sites y0ð1Þ .



Table 1
Material parameters used in the simulation.

Parameter Unit Value Ref. Parameter Unit Value Ref.

Mð1Þ kg/mol 6:94� 10�3 Lide (2005) T K 300

Mð2Þ kg/mol 0.119 Lide (2005) L0 kg s K/m3
1� 10�15b

NB – 4.4 Takeuchi (2016) RV – 1 Qi et al. (2014)
q0 kg/m3

7:265� 103 Lide (2005) N1 – 0.5b

k0 GPa 40.4384 Qi et al. (2014) N2 – 1b

G0 GPa 19.0299 Qi et al. (2014) N3 – 0.5b

aT K�1
2:2� 10�5 Lide (2005) kkG – 0.7 Stournara et al. (2012)

gðeÞ
H

GPa s 2000 Zheng and Mauro (2017) khRT – 4000c

gðeÞ
D

GPa s 1000 Zheng and Mauro (2017) hR nm 1.05 Marcicki et al. (2014)

gðpÞ
D

GPa s 1000 Zheng and Mauro (2017) /0 V 1c

kðpÞ0
(Pa s)�1

1� 10�14a D/R1C V �0.1c

aðpÞ – �0.5 DtI s 5
Kw J/Pa2 3� 10�10a y0ð1Þ0 – 5� 10�4

aðRÞ – �0.5 JM0 mol/(m3 s) 5:9011� 103 c

a Estimated value fit to results shown in Fig. 3.
b Estimated value fit to curves shown in Fig. 1b.
c Estimated value fit to results shown in Fig. 7.
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To make the simulation more stable, we set the total electric
current in the collector changes continuously between zero and
the maximum. The duration of the change is DtI . When the time
is zero, the nonzero initial conditions of the system are

y0ð1Þ ¼ y0ð1Þ0 ð2:3:24Þ

kðPÞþ ¼ kðPÞ� ¼ kðpÞ0 ð2:3:25Þ

JþM ¼ J�M ¼ JM0 ð2:3:26Þ

/ ¼ /0 ð2:3:27Þ

gð2Þij ¼ dij ð2:3:28Þ

qð2Þ ¼ q0 ð2:3:29Þ
where y0ð1Þ0 is used for avoiding the negative infinity of the relative
chemical potential, the reference chemical reaction rate JM0 can be
calculated by setting the overpotential D/R1C for the 1C electric cur-
rent under the ideal situation, i.e., lð12Þ ¼ 0, /0 is the reference elec-
trical potential, and dij is the Kronecker delta. Initially, the particle is
assumed to be stress free, strain free and static, hence the initial val-
ues of the following variables are zero: r, eðeÞ, v , vL

ð2Þ, and lEXð12Þ.
To display the deformation of the particle directly, we need to

calculate Zi, which gives the coordinates of Sn in the lab space.
The solved vL

ð2Þi should be transformed into the component in the
lab space with the below equations. The derivation steps are

shown in Appendix A8. The boundary condition for solving Zi is
vL

ð2ÞL1 z1 ¼ 0
� � ¼ 0.

Z1 ¼ ffiffiffiffiffiffiffiffiffiffiffi
gð2Þ22

p ð2:3:30Þ

@Z3

@z1
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2Þ11 �

@Z1

@z1

 !2
vuut ð2:3:31Þ

@Z3

@z3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2Þ33 �

@Z1

@z3

 !2
vuut ð2:3:32Þ

vL
ð2Þi ¼ vL

ð2ÞLj
@Zj

@zi
ð2:3:33Þ
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@Zi

@t
¼ vL

ð2ÞLi ð2:3:34Þ
3. Results and discussions

In this paper, somematerial parameters of the Li-Sn system cur-
rently serve as placeholders for future simulation versatility for
different lithium-ion battery binary systems. For example, the ref-

erence thermodynamic diffusion coefficient L0, viscosities gðeÞ
H , gðeÞ

D ,

and gðpÞ
D , symmetry factors aðpÞ and aðRÞ, etc. Compared to the

numerical error, the chosen material parameters may dominate
the overall error in final results. Hence, analyzing the numerical
error in the current simulations lacks practical significance and is
neglected in the present theoretical study.

We simulate anode particles at three different C-rates: C-
rate = 3, C-rate = 1.5 and C-rate = 0.75. The particles with all three
C-rates are lithiated until their states of charge (SOC) are equal to
0.5. Once the SOCs reach 0.5, the particles start to relax, and the
electric current decrease to zero within 5 s. The initial times of
the relaxation (tR ¼ 0) are set when the SOCs reach 0.5. We have
presented several key phenomena during the evolution in our sim-
ulations, namely molar fraction of occupied sites of Li (y0ð1Þ), veloc-
ity of Li continuum relative to Sn space (v ð1Þ), mass center velocity
relative to lab space (vL ¼ v þ vL

ð2Þ), hydrostatic elastic strain

(eðeÞH ¼ e eð Þm
m=3), relative chemical potential (lð12Þ), plasticity rate

(kðpÞ), hydrostatic elastic stress (rH ¼ rm
m=3), hydrostatic viscous

stress (sðeÞH ¼ s eð Þm
m=3), hydrostatic Cauchy stress (pH ¼ pm

m=3), and
the evolution of whole cell voltage change as induced by anode
D/ ¼ /0 � /. Please note that all the components are for the lab
space and the values in the results are nondimensionalized if no
unit is specified.

During lithiation, y0ð1Þ and lð12Þ increase with a nonuniform dis-
tribution as displayed in Fig. 2. The higher lð12Þ near the arc makes
Li move from the arc into the particle. The velocity of Li relative to
the Sn space keeps decreasing during lithiation (Fig. 2) since the
fraction of Li is increased. Equation (2.1.4) yields Jð1Þ ¼ qð2Þxð1Þv ð1Þ,
where xð1Þ increases from zero. Although qð2Þ decreases due to
the volume expansion, v ð1Þ decreases from infinity with the con-
stant lithiation rate. The distribution of vL in Fig. 2 shows that
the particle moves relatively faster on the connection region
between the bottom and the arc. While the arc moves outward,



Fig. 2. A representative evolution of several key parameters in Sn particle: Molar fraction of occupied Li sites y0ð1Þ , velocity of Li continuum relative to the Sn space v ð1Þ , mass
center velocity relative to lab space vL , hydrostatic elastic strain eðeÞH , and relative chemical potential lð12Þ during lithiation (C-rate = 3) and relaxation. y0ð1Þ and lð12Þ increase
with uneven distributions during lithiation, which indicates the non-equilibrium state of the system. During relaxation, the distributions of all parameters are gradually even,
which represents the gradually weakened non-equilibrum state. The particle volume continues to increase during whole process because eðeÞH increases during both lithiation
and relaxation.
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the vL on a portion of the arc points to the interior of the particle.
This phenomenon indicates that the deformation of the particle
boundary is combined of (1) the movement of the mass center con-
tinuum and (2) the generation of the mass center continuum by
the chemical reaction on the surface.

In contrast to the increase and the nonuniform distribution of
lð12Þ during lithiation, lð12Þ decreases with a tiny gradient during
the relaxation, as displayed in Fig. 2. This observation indicates
that the system approaches equilibrium. During relaxation, v ð1Þ
in Fig. 2 shows that Li keeps diffusing towards the bottom. Hence,
y0ð1Þ increases near the bottom and decreases near the arc, as dis-
played in Fig. 2. The v ð1Þ on the arc is mostly tangential during
relaxation, which makes y0ð1Þ symmetric along the arc at the end
of relaxation. The direction of v ð1Þ near the top of the particle
points outward during relaxation. This result indicates that some
Li may move out while the total electric current is zero. The parti-

cle volume keeps increasing during relaxation since eðeÞH is
increased.

With the increase of particle volume, kðpÞ concentrates around
the bottom as displayed in Fig. 3a. This trend indicates that the fail-
ure of the particle may initiate near the bottom because of the
stronger plastic deformation occurring there. The particle lithiated
at a higher C-rate shows a higher plasticity rate, suggesting a
higher probability of failure. Fig. 3b shows that the maximum kðpÞ

in the particles of all three C-rates reach stable values during lithi-
Fig. 3. (a) Plasticity rate kðpÞ at SOC 0.1 and 0.5, followed by the relaxation until tR = 180
Maximum plasticity rate in the particle during lithiation and relaxation with three differ
and till reaching to a constant value. A higher C-rate indicates a higher maximum kðpÞ .
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ation and decrease during relaxation, which means that the corre-
sponding generalized driving force w are constrained to stable
values by plastic deformation. This phenomenon is consistent with
the yield stress in the ideal plasticity model.

The spontaneous increase of particle volume indicates the lower
free energy at a larger volume. Then equation (2.1.30) yields
rH < 0, which is demonstrated by Fig. 4 for all three C-rates. Dur-
ing the lithiation, the rH with a higher C-rate is more negative than
that with a lower C-rate, which implies a faster decrease of free
energy and a faster volume expansion. With increased SOC and
C-rates, rH displays stronger nonuniform distribution. The most
negative rH concentrates near the bottom of the particle. During
relaxation, the distributions of rH in Fig. 4 appears more uniform
with increases in tR. rH approaches zero at the end of relaxation,
which indicates the slowdown of free energy change.

Fig. 5 shows the evolution of sðeÞH during lithiation and relax-
ation. A higher C-rate leads to a higher strain rate, and hence a

higher sðeÞH . With an increased SOC, sðeÞH slightly decreases. This
decrease may occur because the enlarged particle volume

decreases the volume expansion rate. During relaxation, sðeÞH

decreases because the strain rate decreases when the system
approaches equilibrium.

The evolution of pH is shown in Fig. 6. The particle is mostly in
compression. pH presents a more negative value when the C-rate is
higher. The region around the bottom has stronger compression
s. The maximum plasticity rate locates near the bottom region of the particle. (b)
ent C-rates. During lithiation, the maximum kðpÞ of every particle initially increases



Fig. 4. Hydrostatic elastic stress rH during lithiation (SOC = 0.1–0.5) and relaxation (tR = 30–600 s) at three different C-rates (3C, 1.5C, and 0.75C). rH becomes negative during
lithaition at all C-rates. rH < 0 means that free energy is decreased when particle volume is increased. Volume expansion is hence a spontaneous behavior of the particle. A
higher C-rate corresponds, rH becomes more negative, which implies a faster decrease of free energy and a faster volume expansion of the particle. During relaxation, rH with
all C-rates get close to zero with gradually even distributions, which indicate the slowdown of free energy change.

Fig. 5. Hydrostatic viscous stress sðeÞH during lithiation (SOC = 0.1–0.5) and relaxation (tR = 30–600 s) at three different C-rates (3C, 1.5C, and 0.75C). A higher C-rate indicates a
higher sðeÞH which slightly decreases with increased SOC. During relaxation, sðeÞH with all C-rates are close to zero with gradually even distributions, which indicate that particles
approach to the equilibrium state.

Fig. 6. Hydrostatic Cauchy stress pH during lithiation (SOC = 0.1–0.5) and relaxation (tR = 30–600 s) at three different C-rates (3C, 1.5C, and 0.75C). The negative value of pH

indicates that the particle is mostly in compression. The bottom region shows stronger compression than the bulk region due to the bonding between the particle and current
collector. A higher C-rate and a higher SOC indicate a stronger uneven-distribution of pH . The uneven distribution gradually disappears during relaxation, which indicates the
particles approach to the equilibrium state.

Fig. 7. The evolution of whole cell voltage change D/ induced by the anode during
charging/relaxation at three different C-rates. A higher C-rate indicates a higher D/
during lithiation. The relaxation stage of D/ for every C-rate includes a steep
decrease followed by a gentle decrease. A higher C-rate corresponds to a lower final
voltage change D/. Thus the cell charged by a lower C-rate results in a higher
voltage at the end of relaxation.
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than the bulk of the particle, due to bonding with the current col-
lector. The pH with a higher C-rate shows more noticeable nonuni-
form distribution. During relaxation, the nonuniform distribution
gradually disappears and pH approaches zero, which suggests a
gradually weakened non-equilibrium state.

Fig. 7 displays the voltage change for an entire cell as induced
by the anode particle. Three anode particles are lithiated with 3C,
1.5C, and 0.75C. The time equals to zero at the beginning of lithia-
tion. Anode particles with 3 different C-rates reach 0.5 SOC when
t = 600 s, 1200 s, and 2400 s, respectively. During the lithiation,
the D/ with the higher C-rate increases faster than the D/ with a
lower C-rate since more electrical energy is dissipated. All the par-
ticles relax to t = 3000 s once their SOC reaches 0.5. During relax-
ation, for all three C-rates, D/ at first decreases steeply, then
approaches stable values after gentle decreases. The steep
decreases correspond to the relaxation of the chemical reaction.
The gentle decreases correspond to diffusional relaxation. The par-
ticle with the higher C-rate needs longer time to relax in the polar-
izations induced by both chemical reaction and diffusion, due to
the stronger non-equilibrium effects of the higher C-rate. The par-
ticle with the lower C-rate has a relatively higher final D/. This
finding suggests that the battery charged by the lower C-rate
may supply more electrical energy, even though it has the same
charge capacity.
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Although the bonding between the particle and the current col-
lector restricts the deformation of the bottom region, the plasticity
flow releases the elastic deformation of the particle. The maximum
kðpÞ locates around the bottom, as displayed in Fig. 3a. For 3C lithi-
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ation, Fig. 3b shows that the kðpÞ around the bottom has not reached
the stable value yet when SOC = 0.1. This observation suggests that
the plasticity deformation may not be enough to release the elastic
deformation when SOC = 0.1. It is consistent with the distribution

of sðeÞH in Fig. 5, by using equation (2.2.26). The particle with 3C

lithiation has a noticeable nonuniform distribution of sðeÞH when
SOC = 0.1. This occurs because the elastic strain rate around the
bottom is restricted by bonding, while the kðpÞ is not yet sufficient
to release the volume expansion there. With the increased SOC
during lithiation, kðpÞ reaches the stable value as displayed in
Fig. 3b, and the elastic strain rate is sufficiently released around

the bottom. Hence, the distribution of sðeÞH in Fig. 5 appears more
uniform during lithiation. During relaxation, the plasticity flow

continues to release the elastic deformation and results in eðeÞH

and rH more uniformly distributed, as shown in Figs. 2 and 4. rH

is related to eðeÞH and y0ð1Þ. During relaxation, the uniformization of

eðeÞH and rH suggests the decrease of the gradient of y0ð1Þ, as shown

in Fig. 2. When approaching to the equilibrium, kðpÞ gets close to
zero (Fig. 3b) since the driving force of kðpÞ nearly vanishes, and
rH is nearly zero and is uniformly distributed (Fig. 4).

The driving force of the plasticity flow depends on the elastic
stress, as depicted in equation (2.2.18). To ensure kðpÞ being higher
around the bottom of the particle in lithiation/relaxation as dis-
played in Fig. 3a, w should be higher around the bottom. Maintain-
ing this nonuniform distribution of w leads to the nonuniform
distribution of rH between the bulk and the bottom, as shown in

Fig. 4. rH and sðeÞH satisfy the equation rH þ sðeÞH ¼ pH which is

derived from equation (2.2.14). Since sðeÞH shows relatively uniform
distribution in Fig. 5, the distribution of pH in Fig. 6 looks similar to
the distribution of rH in Fig. 4. Thus, the nonuniformly distributed
pH should be a necessary condition of the mechanical non-
equilibrium process. During the lithiation, the distribution of both
rH and pH approach steady states as shown in Figs. 4 and 6 respec-
tively. The steady states indicate the mechanical minimum entropy
production in the particle, based on the principle of minimum
entropy production in non-equilibrium thermodynamics (de
Groot and Mazur, 2011). Minimizing the mechanical entropy pro-

duction of the particle should be the essential reason why sðeÞH

approaches a uniform distribution during lithiation in Fig. 5.
Compared with the higher C-rate, a lower C-rate leads to a

slower volume expansion. The elastic strain rate with the lower
C-rate is hence lower. This relation indicates that the necessary
kðpÞ for releasing the elastic deformation around the bottom is
lower. This trend is consistent with the results in Fig. 3b. The par-
ticle requires a shorter process to reach the lower stable value of

kðpÞ. This is the reason why the sðeÞH with the lower C-rate
approaches the uniform distribution earlier than that with the
higher C-rate, as displayed in Fig. 5. The lower kðpÞ corresponds to
the lower driving force w, which leads to a less nonuniform distri-
bution of rH , as shown in Fig. 4. Hence, Fig. 6 shows that the pH

with the lower C-rate has a less nonuniform distribution.
The different C-rate corresponds to the different chemical reac-

tion rate JM , which depends on the D/ and lð12Þ on the arc of the
particle. For the 3C lithiation, Fig. 2 shows that lð12Þ keeps increas-
ing on the arc. With the chemical reaction model in Section 2.2.2,
Fig. 7 shows a consistent result that D/ increases with the
increased SOC during lithiation. During relaxation, the Li on the
arc continues to diffuse into the interior of the particle, and the
lð12Þ on the arc decreases due to the diffusion of Li, as displayed
in Fig. 2. Based on the model of the chemical reaction, D/ hence
decreases with the lð12Þ during diffusional relaxation, as indicated
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in Fig. 7. This process is attributed to approaching an equilibrium
state of the solution system. Fig. 7 suggests that particles for 3C,
1.5C and 0.75C are close to their equilibrium state at t = 1200 s/
tR = 600 s, t = 1550 s/tR = 350 s and t = 2600 s/tR = 200 s, respec-
tively, where tR is the relaxation time. We thus expect that other

state functions, i.e., rH , sðeÞH , and pH , show similar distributions with
respect to different C-rates near these time points. Fig. 4 shows
that the distributions of rH on tR = 600 s/3C are similar to the dis-
tribution of rH on tR = 360 s/1.5C and tR = 180 s/0.75C. Figs. 5 and 6

also show the same phenomenon for sðeÞH and pH at the same time
points. This consistency implies a coupling between the mechanics
and electrochemistry of electrodes.

Some modeling studies (Bower et al., 2015; Cui et al., 2013,
2012) for the mechanical-diffusional coupling effects of electrodes
specialized their formulations for the spherical particle with
traction-free boundary condition, of which simulations were sim-
plified to 1D. The equations in this study, by contrast, are suitable
for generalized geometries. Di Leo et al. (2014) contributed the 2D
finite element simulation for a spheroid electrode particle based on
the finite deformation framework, but the plastic deformation was
not included. Compared to the 1D simulations for traction-free
spherical particles, the 2D simulation for the spherical cap particle
bonded on current collector in this study illuminates the effect of
plastic flow in a more realistic scenario: plastic flow can release
the stress concentrated by the boundary constraint, as discussed
above, and weaken the nonuniform distribution of Li in the parti-
cle, and finally help increase the effective capacity of the electrode.
This effect agrees with the finite element simulation of a hollow
double-walled Si nanotube anode by ; Di Leo et al. (2015): Li-ion
concentration is uniformly distributed in the whole nanotube,
and the plastic deformation induced by the tangential constraint
concentrates at the interior surface of the nanotube (cf. Fig. 6 in
Di Leo et al. (2015)). The effective capacity of the nanotube with
plasticity is much higher than that without plasticity (cf. Fig. 9 in
Di Leo et al. (2015)).

Because of the geometry differences, the Li-ion concentration in
this study is noticeably nonuniform distributed than that in Di Leo
et al. (2015). At the end of relaxation, the particle approaches its
equilibrium state: y0ð1Þ in Fig. 2 shows (1) a relatively higher value
that evenly distributes along the arc section of the particle bound-
ary, and (2) the sharp change at the connection between the arc
and the bottom of the particle boundary (point C in Fig. 1a). These
two phenomenon were also displayed in the cross section image of
a Sn particle captured by the field emission scanning electron
microscope (FESEM) in the study of Takeuchi (2016), in which
the Sn particle was bonded on current collector and slowly lithi-
ated (C-rate = 0.0146) by Li focused ion beams (Li-FIB). In addition,
the FESEM image for the cross section of the Sn particle (cf. Fig. 1d
in Takeuchi (2016)) shows a band of contrast in the bulk region
near the implantation area of Li-FIB, which is not revealed in our
simulation (Fig. 2). This difference may be attributed to the differ-
ent boundary conditions of Li flux on particle surface: The localized
Li-FIB had been shown to generate complicated local plastic defor-
mation on the implantation area (cf. Fig. 1c in Takeuchi (2016)),
which leads to the local unforeseen distribution of Li concentration
due to the mechanical-diffusional coupling effect.

The mechanical-diffusional-electromechanical coupling effect
in this study is formulated based on the continuity of state func-
tions, as shown in Section 2.1, which yields the spatial continuity
of h and rh during the non-equilibrium process. Hence kðpÞ and
rkðpÞ should be continuous over space. This requirement is satis-
fied by the kinetic plasticity model kðPÞ ¼ kðPÞ wð Þ in Section 2.2.2,
which is a continuous function without involving a specific yield-
ing strength. When w is relatively tiny, kðPÞ represents the stress-
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induced creep. The kinetic plasticity model shows the similar
response of plastic strain to the ideal plasticity model (Hill, 1998)
when Kw in equations (2.2.21) and (2.2.22) is large enough. The
smooth transition between the elastic region and plastic region
of electrodes has been formulated using the piecewise power func-
tions in Bower et al. (2011), Bower et al. (2015), Cui et al. (2012),
Cui et al. (2013), and Di Leo et al. (2015). Compared to the piece-
wise plasticity models, the kinetic plasticity model helps simplify
the procedure of solving the system equations by excluding the
radial return algorithm (Simo and Taylor, 1986; Wang and Atluri,
1994) used for locating the plastic region in the system.

The chemical potential model that includes the finite deforma-
tion of electrodes has been studied by Cui et al. (2012), Cui et al.
(2013), in which the mechanical part of the chemical potential
model has a coefficient term @F�

@c

� �
F;C that represents the deforma-

tion change induced by the concentration change for the interme-
diate state under the fixed total deformation and the fixed
stiffness. However, @F�

@c

� �
F;C relates to not only the material property

(i.e., the expansion ratio) but also the change of elastic state, which
is implicit and needs to be solved. In contrast, the relative chemical
potential model in this study uses the material property KD only to
explicitly show the mechanical part. In some other studies of mod-
eling the finite deformation of electrodes, e.g., Bower et al. (2011),
Dal and Miehe (2015), Di Leo et al. (2014), Di Leo et al. (2015), and
Bucci et al. (2016), the chemical potential are modeled based on
the Larche-Cahnmodel (Larché and Cahn, 1973) shown in equation
(1.1). However, the Larche-Cahn model (Larché and Cahn, 1973) is
based on the assumptions that (1) the deformation of the system is
small and thermodynamically reversible and (2) the molar mass of
Li-ion is much less than the molar mass of site component,
Mð1Þ 	 Mð2Þ. The assumption of small deformation would result
in the metric change negligible. Thermodynamic reversibility
would result in the integral to be path independent. Mð1Þ 	 Mð2Þ
indicates constant density and v ¼ 0, which linearize the rate
equations (2.2.12), (2.2.45), and (2.2.46). Then directly integrating
the rate equations yields the Larche-Cahn model, which is a special
case of the non-equilibrium model in this study. Using the Larche-
Cahn model suggests the acceptance of above two assumptions.
However, the assumption (1) is limited in the infinitesimal defor-
mation and an equilibrium process. The assumption (2) oversim-
plifies the diffusion of Li since the molar mass of Li should not be
negligible for most electrode materials. Therefore, it is not plausi-
ble to adopt the Larche-Cahn model to describe the chemical
potential of electrodes with finite deformation or non-
equilibrium process.

As Li atoms should share the stress of electrodes, we consider
the movement of lithium as a part of the deformation of the mix-
tured system represented by the mass center contiuum. The
deformation of the mixtured system should be formulated based
on the mass-conserved infinitesimal element instead of the mole-
number-conserved infinitesimal element, because the different
molar mass of components make the mass conservation con-
flicted with the mole-number-conservation in the infinitesimal
element of mass center continuum. Thus, we use the mass frac-
tions of components instead of the concentration of components,
and the specific free energy instead of the free energy density to
formulate the mixtured system. In the existing studies for model-
ing the finite deformation of electrodes (Bower et al., 2011; Di Leo
et al., 2014, 2015; Dal and Miehe, 2015; Bucci et al., 2016; Cui
et al., 2013, 2012), by contrast, the concentration of components
and the free energy density are used in the formulations based on
the mole-number-conservation, suggesting that the movement of
Li atoms are not considered as a part of the deformation of the
mixture.
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The mass-conserved infinitesimal element of the mixtured sys-
tem is introduced by using multi metric spaces, in which every
space reveals the deformation of every corresponding component
in the mixture. The method of multi metric spaces helps distribute
the strains of the mixtured system conveniently: the Li-Sn system
includes three metric spaces (i.e., mass center space, Sn space, and
lab space), in which the Sn space is selected as the reference space
because (1) the elastic strain and the plastic strain rate of the mix-
ture are assigned to the Sn continuum due to the interstitial mixing
of the Li-Sn system, and (2) the Sn space is the Lagrangian space of
the Sn continuum, which satisfies the requirement of the additive
decomposition of strain component (equation (2.1.11)) derived
from the metric-based definition of the finite strain (equation
(2.1.10)). Compared to the multiplicative decomposition of defor-
mation gradient used in the other modeling works for finite defor-
mation of electrodes (Bower et al., 2011; Di Leo et al., 2014, 2015;
Bucci et al., 2016; Cui et al., 2013, 2012), the additive decomposi-
tion of strain component is linear, simpler and also valid for the
finite deformation of electrodes.

The method of multi metric spaces in this study reveals the
diffusion-induced creep of electrodes. In the Li-Sn system
described in the Sn space (i.e., reference space), the influences of
diffusion-induced creep on the mixture (i.e., mass center contin-
uum) are represented by the diffusion-induced convective effects,
which are indicated by the terms including v (i.e., the mass center
velocity relative to the reference space) in rate equations (2.2.12),
(2.2.45) and (2.2.46). In the relation between the electrical poten-
tial and Li concentration of a Si film electrode measured by Pharr
et al. (2014), the electrical potential showed transient trend rever-
sal with each change of C-rate during lithiation, and the rate of the
trend reversal is higher when the change of C-rate is larger (cf.
Fig. 1 in Pharr et al. (2014)). This phenonmenon may be explained
by the influcence of diffusion-induced creep: At the moment of
instantly increasing the C-rate of the Si film electrode during lithi-

ation, in the region of chemical reaction, eðeÞkj
@vk

@zi and v
k @eðeÞ

ij

@zk in equa-

tion (2.2.12) increase instantly, while the change of
@eðeÞ

ij

@t may keep
negligible because of the viscosity of the electrode. Then increased
_eðeÞij may decrease dlð12Þ=dt by equations (2.2.46) and (2.2.47) since
KD < 0. Finally, the slope @/=@t is increased by equation (2.2.32). /
hence transiently increases after each instant decrease induced by
increasing the C-rate, and vice versa. When the change of C-rate is

larger, the changes of terms eðeÞkj
@vk

@zi and v
k @eðeÞ

ij

@zk in equation (2.2.12)
are larger, finally the trend reversal of / is faster. As / is influenced
by v in equation (2.2.12), the diffusion-induced creep should take
part in the mechanical-diffusional-electrochemical coupling effect
of electrodes.

As the influence of the diffusion-induced creep, the terms
including v in rate equations (2.2.12), (2.2.45) and (2.2.46) make
the integrals for elastic strain, elastic stress, and relative chemical
potential related to the history of diffusion. Furthermore, the elas-
tic stress is influenced by the rate of deformation, because of the
viscous stress sðeÞ in equations (2.2.14) and (2.2.23). Therefore,
the states of a mixtured system relate to the history and the rate
of the evolution of the system, which is an essential feature of
the non-equilibrium process. Compared to the framework that is
based on the rate functions for modeling the non-equilibrium pro-
cess of electrodes in this study, the formulations in existing contri-
butions (Bower et al., 2011; Di Leo et al., 2014, 2015; Bucci et al.,
2016; Cui et al., 2013, 2012) are based on the assumed explicit
expressions of the free energy density without considering the vis-
cosity and diffusion-induced creep, which are only suitable for the
systems in quasi-equilibrium process.
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4. Conclusion

In this paper, we have developed a general theory to describe
the evolution of a solid solution system with finite deformation.
The system is considered as a non-equilibrium process rather than
a quasi-equilibrium process. This fully self-consistent theory is
hence formulated based on rate functions. Mechanics, diffusion,
phase separation, chemical reaction and electrical potential of
the system are coupled with each other in the formulation. The
key function of the coupling is the rate of the relative chemical
potential that depends on the elastic strain rate and Li-ion fraction
rate. The general theory has been applied to a simplified Li-Sn sys-
tem in Li-ion batteries. We set multiple metric spaces to clarify the
influence of the diffusion-induced creep of the system and to help
assign different strains conveniently. During the non-equilibrium
process of the Li-Sn system, the entropy production rate of the sys-
tem is composed of a mechanical component, a diffusional compo-
nent, and a chemical reaction component. The mechanical part is
comprised of viscosity and plasticity and where the linearized vis-
cosity is used. The plasticity and chemical reaction are formulated
based on the transition-state theory. The kinetic formulation of the
plasticity generates a continuous interface between elastic defor-
mation and plastic deformation which helps obviate the steps of
identifying the plastic region in the system and simplify the proce-
dure of solving the plasticity of electrodes.

Three Sn electrode particles with initial spherical cap geome-
tries and appropriate boundary conditions have been numerically
simulated using the finite difference method coded with MATLAB.
We have compared the lithiated processes of the particles with
three different C-rates, including the lithiation and relaxation.
The simulation results show that the bottom region of each particle
has more plastic deformation than the bulk region. The plastic
deformation helps release the volume expansion around the bot-
tom region, although it is bonded. The particle with a higher C-
rate needs a longer process to obtain higher rate of plastic defor-
mation, which releases the faster volume expansion around the
bottom. During lithiation, the electrical potential of the particle
with a higher C-rate shows more polarization. After relaxation,
the particle with a lower C-rate consists more electric energy, even
though the final electric capacities of all particles are the same.

With the rigorous mathematical formulation, we illuminate the
evolution of a solid solution system in details. Our developed the-
ory and simulation help better understand the mechanical-diffu
sional-electrochemical coupling effect in Li-ion batteries. Some
innovations in this study, such as multiple metric spaces for differ-
ent components, diffusion-induced creep/convection, viscosity,
and kinetic plasticity, may provide more insight into the descrip-
tion of continuous mixtures especially at non-equilibrium.
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Appendix A

A1. Introduction to the metric-based kinematics of finite deformation

The initial configuration and the deformed configuration of a con-
tinuum correspond to two spaces with curvilinear coordinate
frames f1; f2; f3

� �
and g1;g2;g3

� �
respectively. The differential of

radius vector is invariant in both spaces: dr ¼ @r
@fi

dfi ¼ @r
@gj dg

j. The

basis of initial space and deformed space are defined by ei ¼ @r
@fi
138
and êj ¼ @r
@gj respectively, where ^ denotes the deformed space.

With the function relation fi ¼ fi g1;g2;g3
� �

, we have

dr ¼ dgjêj ¼ dfiei ¼ @fi

@gj dg
jei, which yields

êj ¼ @fi

@gj
ei ðA1:1Þ

The function relation gi ¼ gi f1; f2; f3
� �

yields

dgi ¼ @gi

@fj
dfj ðA1:2Þ

Equations (A1.1) and (A1.2) show the transformations between
two spaces for the basis and components of dr respectively. Quan-
tities which transform like the basis of dr, by equation (A1.1), is
named covariant. Quantities which transform like the components
of dr, by equation (A1.2), is named contravariant. Please note the
different locations of the dummy indices in equation (A1.1) and
equation (A1.2). The transformations for covariant quantities and
contravariant quantities are mutually inverse. The indices of
covariant quantities are subscripts. The indices of contravariant
quantities are superscripts. A pair of the same indices that one is
subscript and the other is superscripts indicates the Einstein sum-
mation convention.

The metric of a space is defined as the dot product between two
base vectors of the space. The metric of the initial space is
gij ¼ ei � ej. The contravariant metric gij is the inverse of gij:

gij
� � ¼ gij

� ��1. We use gij to introduce the contravariant basis of

the initial space: ej ¼ gijei. The deformed space also has the corre-

sponding metric ĝij and contravariant basis êi.
Based on the invariance of tensors, a 1st order tensor A and a

2nd order tensor T respectively satisfy below equations:

A ¼ Aiei ¼ Aiei ¼ Â
i
êi ¼ Âiê

i ðA1:3Þ

T ¼ Tijeiej ¼ Tijeiej ¼ Ti
jeie

j ¼ T̂
ij
êiêj ¼ T̂ ijê

iêj ¼ T̂
i

jêiê
j ðA1:4Þ

where Ti
j and T̂

i

j are called mixed components of T . The contravari-
ant components, covariant components, and mixed components of

T in different spaces are transformed by T̂
ij ¼ Tkl @gi

@fk
@gj

@fl
,

T̂ ij ¼ Tkl
@fk

@gi
@fl

@gj, and T̂
i

j ¼ Tk
l
@gi

@fk
@fl

@gj respectively.

The metric of a space can be used to change the indices location

of the tensor components in the space. For example, Ai ¼ Ajgij, and

T̂ ij ¼ T̂
kl
ĝkiĝlj ¼ T̂

l

iĝlj. It can be proved that gij and gij are respectively
the covariant and contravariant components of a tensor g, named
the fundamental metric tensor, whose mixed components are equal
to the Kronecker delta: gi

k ¼ ei � ek ¼ gijgjk ¼ dik. The mixed compo-
nents of g are usually used to change the indices of quantities. For
example, the trace of T is calculated by

Tr Tð Þ ¼ Tijeiej
� �

: gkle
kel

� � ¼ Tijgkl ei � ek
� �

ej � el
� � ¼ Tijgklg

k
i g

l
j

¼ Tijgij ¼ Ti
i ¼ T

^ i

i

We consider the configuration of a deformed continuum as a
deformed space. The covariant component of strain for the space
deformation is defined as half of the metric change of the space
from initial state to final state, as shown below,

eij ¼ 1
2

g
�
ij � g

�
ij

� �
ðA1:5Þ

where eij is the covariant component of strain, g
�
ij and g

�
ij are the

metric of the final space and the initial space respectively. eij can
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be used to introduce two strain tensors with the same covariant

components but different contravariant basis: e
� ¼ eije

�i
e
�j

and

e
� ¼ eije

�i
e
�j
. The tensor e

�
is equivalent to the Green strain tensor when

the initial space is undeformed, which is proved below: The final
metric and the initial metric are ĝij and gij respectively, which indi-

cates êij ¼ 1
2 ĝij � gij

� �
, where the ^ in êij emphasizes the basis of

deformed space for strain tensor. With Fi
j ¼ @fi

@gj, we have

êijê
iêj ¼ 1

2
ĝijê

iêj � gijê
iêj

� �
¼ 1

2
gklF

k
i F

l
jê

iêj � gijê
iêj

� �
ðA1:6Þ

êijê
iêj ¼ 1

2
ek � elð ÞFk

i F
l
jê

iêj � gijê
iêj

h i
¼ 1

2
Fk
i ê

iek
� �

� Fl
jelê

j
� �

� gijê
iêj

h i
ðA1:7Þ

The deformation gradient is a two-point tensor, which includes
the basis of two different spaces. As the initial space is unde-

formed, gijê
iêj ¼ I. We hence have,

ê ¼ 1
2

FT � F � I
� �

ðA1:8Þ

where the right side is the definition of Green strain tensor.
When we decompose a deformation to multiple sequential pro-

cesses, we have the multiplicative decomposition of deformation
gradient and the additive decomposition of strain component.
The additive decomposition of strain component (equation
(2.1.11)) is proved as below: For simplicity, we consider two
sequential processes for a deformation, (a) and (b). Based on equa-
tion (A1.5), the covariant component of strain for the process (a) is

êðaÞij ¼ 1
2

g
�ðaÞ
ij � g

�ðaÞ
ij

� �
¼ 1

2
g
�ðaÞ
ij � gij

� �
ðA1:9Þ

and the covariant component of strain for the process (b) is

êðbÞij ¼ 1
2

g
�ðbÞ
ij � g

�ðbÞ
ij

� �
¼ 1

2
ĝij � g

�ðbÞ
ij

� �
ðA1:10Þ

Because processes (a) and (b) are sequential, we have g
�ðaÞ
ij ¼ g

�ðbÞ
ij ,

summing equations (A1.9) and (A1.10) yields the additive decom-
position below,

êij ¼ êðaÞij þ êðbÞij ðA1:11Þ
Hence, as two different mathematical forms of decomposing the

finite deformation, the multiplicative decomposition of deforma-
tion gradient and the additive decomposition of strain component
(equation (2.1.11)) are mutually consistent. Please note that only
the covariant components in Lagrangian measure satisfy the addi-
tive decomposition of strain component.

In a curvilinear coordinate frame, the covariant derivative and
Laplacian for scalars, and the covariant derivatives for the covari-
ant/contravariant components of 1st and 2nd order tensors, are
listed below:

riu ¼ @u
@fi

r2u ¼ @2u
@fi@fj

gij � @u
@fk

Ck
ijg

ij

riwj ¼ @wj

@fi
þwkCj

ki

riwj ¼ @wj

@fi
�wkC

k
ji
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riH
jk ¼ @Hjk

@fi
þ HlkCj

li þ HjlCk
li

riHjk ¼ @Hjk

@fi
� HmkC

m
ij � HjmC

m
ik

where Ck
ij is called Christoffel symbols. In Euclidean space and Rie-

mannian Space, Christoffel symbols are calculated as below,

Ci
jk ¼

1
2
gis @gjs

@fk
þ @gks

@fj
� @gjk

@fs

� �

For more information about the metric-based continuum
mechanics, see the reference Sedov (1997).

A2. Generalized mass conservation equation

A density function f of a continuum can be written as

f ¼ f Z1; Z2; Z3; t
� �

or f ¼ f z1; z2; z3; t
� �

. The rate of the volume inte-

gral of f depends on the local rate of f and the deformation of the
domain of integration as shown below (Sedov, 1997):

d
dt

Z
V
fdt ¼

Z
V

@f
@t

� �
Z

þr � fvL
t

� �� 	
dt ðA2:1Þ

where vL
t is the velocity of the domain of integration of the contin-

uum relative to the lab space. The rate of f for fixed Lagrangian
coordinates of the continuum has two forms below:

df
dt

¼ @f
@t

� �
Z

þ vL
t � rf ðA2:2Þ

df
dt

¼ @f
@t

� �
z
þ vt � rf ðA2:3Þ

where vt is the velocity of the domain of integration of the contin-
uum relative to the reference space. The relation between vL

t and vt

is

vL
t ¼ vt þ v� ðA2:4Þ

Substituting equations (A2.2), (A2.3), and (A2.4) into equation
(A2.1) yields

d
dt

Z
V
fdt ¼

Z
V

@f
@t

� �
z

þr � fvtð Þ þ fr � v�
� 	

dt ðA2:5Þ

Based on mass conservation for component k, chemical reac-
tions determine the variation of total mass which is equal to the
variation of the volume integral of qðkÞ, as shown in equations
(A2.6) and (A2.7):

dmðkÞ
dt

¼
Z
V

X
j

nðjÞðkÞJ
ðjÞdt ðA2:6Þ

dmðkÞ
dt

¼ d
dt

Z
V
qðkÞ z1; z2; z3; t
� �

dt ðA2:7Þ

Setting f ¼ qðkÞ and vt ¼ v ðkÞ in equation (A2.5) and combining
equation (A2.6) yield equation (2.1.1).

A3. Entropy production rate

Combining equations (2.1.12), (2.1.14), (2.1.15) and the diver-
gence theorem yields

d
Z
V
uqdV ¼

Z
V

qdqþ
X
k

qðkÞ drLkð Þ � drL
� �

� FL
kð Þ þ p : rdrL

" #
dV

ðA3:1Þ
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Because qdV ¼ dm, which is conserved mass differential, the
variational of the total internal energy for the mass center contin-
uum relates to the functional derivatives with respect to indepen-
dent variables by

d
Z
V
uqdV ¼

Z
V

dU
ds

� �
e;x

dsþ
X
l

dU

dêðlÞij

 !
s;eðl0–lÞ ;x

dêðlÞij

2
4

þ
XK�1

k

dU
dxðkÞ

� �
s;e;xðk0–kÞ

dxðkÞ

3
5qdV ðA3:2Þ

Combining equations (A3.1) and (A3.2), setting ds ¼ ds,

dêðlÞij ¼ dêðlÞij , dxðkÞ ¼ dxðkÞ, dq ¼ dq, drLðkÞ ¼ vL
ðkÞdt, and drL ¼ vLdt (vari-

ational are arbitrary and can be set following the real process), and
using equation (2.1.4) yield

qTdsþ
X
l

r̂ðlÞijdêðlÞij þ
XK�1

k

qlðkKÞdxðkÞ

¼ qdqþ
XK
k

JðkÞ � FL
kð Þdt þ p : rvLdt ðA3:3Þ

We assume that p is a symmetric tensor. Using the kinematic
relations equations (A3.4) and (A3.5) for strain rate and strains
yields equation (A3.6):

_eij ¼ 1
2

rivL
j þrjvL

i

� �
ðA3:4Þ

êij ¼
X
l

êðlÞij ðA3:5Þ

p : rvLdt ¼ p : _edt ¼ p̂ijdêij ¼
X
l

p̂ijdêðlÞij ðA3:6Þ

Then, substituting
PK

k JðkÞ ¼ 0, the definition of heat flux
qdq ¼ �r � JQdt, equations (2.1.26), (2.1.27), and (A3.6) into
equation (A3.3) yields equations (A3.7), (A3.8), and (A3.9) for
entropy change, entropy flow and entropy production rate,
respectively. Using equations (A3.10) and (2.1.25) we have
equation (2.1.24).

q
ds
dt

¼ �r � JS þ h ðA3:7Þ

JS ¼
1
T

JQ �
XK�1

k

lðkKÞJðkÞ

 !
ðA3:8Þ

Th ¼ �Js � rT þ
X
l

pij � rðlÞij� �de^ ðlÞij
dt

�
XK�1

k

JðkÞ � rWL
ðkKÞ þ

X
j

JðjÞAðjÞ
C

ðA3:9Þ

_̂e
ðlÞ
ij ¼ dêðlÞij

dt
ðA3:10Þ
A4. Relative chemical potential

Because s is assumed to be independent of rxð1Þ and reðlÞ, we
have

@s
@xð1Þ

� �
T;:::

¼ f xð1Þ; ê
ðlÞ
ij

� �
ðA4:1Þ
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It yields

d T
@s

@xð1Þ

� �
T;:::

" #
¼ @s

@xð1Þ

� �
T;:::

dT þ T
@2s
@x2ð1Þ

 !
T;:::

dxð1Þ

þ
X
l

T
@2s

@xð1Þ@ê
ðlÞ
ij

 !
T;:::

dêðlÞij ðA4:2Þ

Based on the symmetry of the 2nd order derivatives of aF , equa-
tions (2.1.30) and (2.1.31) yield

X
l

T
@2s

@xð1Þ@ê
ðlÞ
ij

 !
T;:::

dêðlÞij ¼
X
l

� @ĉðlÞij

@xð1Þ

 !
T;:::

TdêðlÞij ðA4::3Þ

Substituting equation (A4.3) into equation (A4.2), we have

@s
@xð1Þ

� �
T;:::

dT þ T
@2s
@x2ð1Þ

 !
T;:::

dxð1Þ

¼ d T
@s

@xð1Þ

� �
T;:::

" #
þ T

@c
@xð1Þ

� �
T;:::

ĝijdêðeÞij ðA4:4Þ

Using equation (A4.4) in equation (2.1.33) yields

dlHOMð12Þ ¼ �d T
@s

@xð1Þ

� �
T;:::

" #
� T

@c
@xð1Þ

� �
T;:::

ĝijdêðeÞij

þ jĝijdêðeÞij þ @2u
@x2ð1Þ

 !
T;:::

dxð1Þ ðA4:5Þ

The parameter tensors with the 1st and 3rd orders are zero in
isotropic material (Sedov, 1997). Using equation (2.1.29) we sim-
plify equation (2.1.34) to

dl̂i
INHð12Þ ¼ x̂rspi

rð12Þdr̂pê
ðeÞ
rs þ Kð12Þĝ

iqdr̂qxð1Þ ðA4:6Þ
with defining a material property

@2u

@r̂ixð1Þ@r̂qxð1Þ
¼ K̂

iq

rð12Þ ¼ Kð12Þĝ
iq ðA4::7Þ

The specific entropy s is related to the molar entropy sM com-

posed of a fraction part sMF ¼ sMF y0ð1Þ
� �

and a deformation part

sMD ¼ sMD eðlÞij
� �

as shown below:

s ¼ S
m

¼ Nð2ÞNB

m
sM ¼ xð2Þ

NB

Mð2Þ
sMF þ sMDð Þ ðA4:8Þ

The fraction part obeys the entropy of the ideal solution as
shown below (DeHoff, 2006):

sMF ¼ �R y0ð1Þlny
0
ð1Þ þ 1� y0ð1Þ

� �
ln 1� y0ð1Þ
� �h i

ðA4:9Þ

Equation (A4.9) yields

@

@xð1Þ
xð2Þ

NB

Mð2Þ
sMF

� �
T;:::

¼ �R
1

Mð1Þ
ln

y0ð1Þ
y0ð2Þ

� NB

Mð2Þ
lny0ð2Þ

" #
ðA4:10Þ

We define the excess relative chemical potential as below:

lEXð12Þ ¼ lHOMð12Þ þ T
@

@xð1Þ
xð2Þ

NB

Mð2Þ
sMF

� �
T;:::

ðA4:11Þ

Substituting equations (A4.8) and (A4.11) into equation (A4.5)
yields

dlEXð12Þ ¼
NB

Mð2Þ
TdsMD � T

@c
@xð1Þ

� �
T;:::

ĝijdêðeÞij þ jĝijdêðeÞij

þ @2u
@x2ð1Þ

 !
T;:::

dxð1Þ ðA4:12Þ
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where c is related to the stiffness and thermal expansion ratio as
shown below

c
^ ðeÞij ¼ cg

^ ij ¼ � @

@e
^ðeÞ
kl

r
^ ij

HOM

q

0
@

1
A

xð1Þ ;e
^ðeÞ
mn–kl

@e
^ ðeÞ
kl

@T

0
@

1
A

rHOM
q

¼ � kqg
^ ij

g
^ kl þ Gqg

^ ik

g
^ jl þ Gqg

^ il

g
^ jk

� �
aTg

^

kl ðA4:13Þ

Thus the coupling coefficient in the relative chemical potential
of a isotropic material is

KD ¼ j� T
@c
@xð1Þ

� �
T;:::

� T
xð2Þ

c ðA4:14Þ

With defining a material property h ¼ @2u
@x2ð1Þ

� �
T;:::

, substituting

equation (A4.14) into equation (A4.12) yields equation (2.2.46).

We assume l̂i
INHð12Þ is a 1st order homogeneous function of

r̂pê
ðeÞ
rs and r̂qxð1Þ. Equation (A4.6) yields

l̂i
INHð12Þ ¼ x̂rspi

r r̂pê
ðeÞ
rs þ Kð12Þĝ

iqr̂qxð1Þ ðA4:15Þ
where x̂rspi

r for isotropic material satisfies

x̂rspi
r ¼ xI ĝ

rsĝpi þxIIAĝ
rpĝsi þxIIBĝ

riĝsp ðA4:16Þ
For simplicity, we assume xIIA ¼ xIIB ¼ 0. Combining equations

(2.1.21), (A4.10), (A4.11), (A4.15) and (A4.16) yields equation

(2.2.47). If @c
@xð1Þ

� �
T;:::

¼ 0, we have equation (2.2.48). Equation

(2.2.49) is obtained from equation (A4.13).

A5. Transformed equations

We divide the relative chemical potential into a homogeneous-
logarithm part and an inhomogeneous-excess part, lð12Þ ¼
lHLð12Þ þ lIEð12Þ with

lHLð12Þ ¼ RT
1

Mð1Þ
ln

y0ð1Þ
y0ð2Þ

� NB

Mð2Þ
lny0ð2Þ

" #
ðA5:1Þ

Using equations (2.2.47) and (A5.1) yields equation (2.3.15).
Combining equations (2.2.1), (2.2.2), (2.2.3), (2.2.28), (2.2.47),
(2.3.2), (2.3.3), and (2.3.15) yields equations (2.3.1) and (2.3.6).
Combining equations (2.1.12), (2.1.13), and vL ¼ v þ vL

ð2Þ yields
equation (2.3.4). Using equations (2.2.14) and (2.2.26) we have
equation (2.3.5).

A6. Relation between D and L

Using equations (2.1.5) and (2.2.1), the flux of Li can be written
as

Jð1Þ ¼ qð1Þxð2Þv ð1Þ ¼ cð1ÞMð1Þxð2Þv ð1Þ ðA6:1Þ
where cð1Þ is the concentration of Li. To estimate the relation

between D and L, we only consider lHLð12Þ in the diffusion for sim-
plicity, as shown below,

Jð1Þ 
 � L
T
rlHLð12Þ ¼ �LR

1
Mð1Þy0ð1Þy

0
ð2Þ

þ NB

Mð2Þy0ð2Þ

 !
ry0ð1Þ ðA6:2Þ

The Fick’s 1st law yields

cð1Þv ð1Þ ¼ �Drcð1Þ ¼ �DcMAXry0ð1Þ ¼ �D
NBqð2Þ
Mð2Þ

ry0ð1Þ ðA6:3Þ

Combining equations (A6.1), (A6.2), (A6.3), and (2.2.29) yields
the expression of D as shown below,
141
D ¼
RL0f L Mð2Þ þMð1ÞNBy0ð1Þ

� �2
NBqð2ÞM

2
ð1ÞMð2Þy0ð1Þy

0
ð2Þ

ðA6:4Þ
A7. Differential of expanded surface area

Initially, the area differential of the particle surface is governed
by

dl0j j2 ¼ g�
ð2Þijdzidzj ¼ dz1

� �2 þ dz3
� �2 ðA7:1Þ

and

d10j j2 ¼ g�ð2Þ22 dz2
� �2 ¼ z1

� �2
dz2
� �2 ðA7:2Þ

where dl0 is the initial length of the infinitesimal arc perpendicular
to the initial basis vector e2 on the particle surface and d10 is the ini-
tial length of the infinitesimal arc parallel to the initial basis vector
e2 on the particle surface. After the particle is deformed, the lengths
of the infinitesimal arcs have

dlj j2 ¼ gð2Þijdz
idzj

¼ gð2Þ11 dz1
� �2 þ 2gð2Þ13dz

1dz3 þ gð2Þ33 dz3
� �2 ðA7:3Þ

and

d1j j2 ¼ gð2Þ22 dz2
� �2 ¼ Z1

� �2
dz2
� �2 ðA7:4Þ

where dl is the length of the infinitesimal arc perpendicular to
the basis vector e2 on the particle surface and d1 is the length of
the infinitesimal arc parallel to the basis vector e2 on the particle
surface. Hence, the initial and present area differentials respec-
tively have

dA0ð Þ2 ¼ dl0j j2 d10j j2 ðA7:5Þ
and

dAð Þ2 ¼ dlj j2 d1j j2 ðA7:6Þ
Combining equations (A7.1), (A7.2), (A7.3), (A7.4), (A7.5), and

(A7.6) yields equation (2.3.23).

A8. The component of vL
ð2Þ in the lab space

The relation between the components of a tensor in different
coordinate frames yields equations (2.3.33) and (A8.1) (Sedov,
1997);

gð2Þij ¼ gL
pq
@Zp

@zi
@Zq

@zj
ðA8:1Þ

where gL
pq is the metric of lab space. Using equation (A8.1) we have

equation (2.3.30). If we assume @Z3

@z1 < 0 and @Z3

@z3 > 0, equation (A8.1)
implies equations (2.3.31) and (2.3.32).
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